Tips on the variability of BBQ charcoal characteristics to assist consumers in product choice

Abstract

Charcoal is a widely used barbecue product that comes into direct and indirect contact with the foods ingested. Thus, it must have adequate technical characteristics so that its consumption is not harmful to the environment and human beings. This study aimed to investigate the quality of charcoal for use in domestic barbecue, relating different brands and commercial categories. Products from different brands were collected in two consecutive years, in five different commercial categories: supermarket chain; independent supermarkets; meat market; gas station; and other establishments. The physical, chemical and mechanical properties of charcoal were analyzed. Data were analyzed by uni- and multivariate methods. High variability of product characteristics according to brands, commercial categories and years of collection was detected. In addition, some briquettes marketed as charcoal had characteristics unsuitable for use in barbecue, such as high moisture content (> 9%), high ash content (> 10%) and high friability. Charcoal made available for domestic barbecue has high variability of its technical characteristics for combustion and not all of them were suitable for the use in barbecue.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. ABNT (1985) NBR 9165: Determinação da densidade relativa aparente, relativa verdadeira e porosidade (Determination of apparent relative density, true relative and porosity). Associação Brasileira de Normas Técnicas (Brazilian Association of Technical Standards), Rio de Janeiro: ABNT, pp 8

  2. AFNOR (2005) NF EM 1860-2: Appareils, combustibles solides et allume-barbecue pour la cuisson au barbecue (Appliances, solid fuels and barbecue lighter for barbecue cooking). Association Française de Normalisation (French Association for Standardization,), Saint Denis, Paris, pp 29

  3. Andrade AM, Della Lucia RM (1995) Avaliação da higroscopicidade do carvão vegetal e seus efeitos na resistência ao esmagamento (Evaluation of the hygroscopicity of charcoal and its effects on crushing resistance). Floresta Ambiente (Forest Environ) 2:19–26

    Google Scholar 

  4. Andrade AM, Machado FS (2004) Comparação entre as propriedades físicas e mecânicas dos finos de carvão vegetal e de carvão mineral, para injeção nas ventaneiras de altos-fornos siderúrgicos (Comparison between the physical and mechanical properties of fine charcoal and mineral coal, for injection into the blast furnaces of steel blast furnaces). Biomassa Energia (Biomass & Energy) 1:273–279

    Google Scholar 

  5. Assis MR, Brancheriau L, Napoli A, Trugilho PF (2016) Factors affecting the mechanics of carbonized wood: literature review. Wood Sci Technol 50:519–536

    CAS  Article  Google Scholar 

  6. ASTM (2007) ASTM D-1762-84: Standard test method for chemical analysis of wood charcoal. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  7. ASTM (2017a) ASTM D-2395-17: Standard method for density and specific gravity (relative density) of wood and wood-based materials. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  8. ASTM (2017b) ASTM D-5057-17: Standard method for screening apparent specific gravity and bulk density of waste. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  9. ASTM (2019) ASTM D441-07: Standard method for tumbler test for coal. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  10. Aung TW, Jain G, Sethuraman K, Baumgartner J, Reynolds CC, Grieshop AP, Brauer M (2016) Health and climate-relevant pollutant concentrations from a carbon-finance approved cookstove intervention in rural India. Environ Sci Technol 50:7228–7238

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Bergeron SP, Bradley RL, Munson A, Parsons W (2013) Physico-chemical and functional characteristics of soil charcoal produced at five different temperatures. Soil Biol Biochem 58:140–146

    CAS  Article  Google Scholar 

  12. Berube K, Balharry D, Sexton K, Koshy L, Jones T (2007) Combustion derived nanoparticles: mechanisms of pulmonary toxicity. Clin Exp Pharmacol Physiol 34:1044–1050

    CAS  PubMed  Article  Google Scholar 

  13. Bonjour S, Rohani HA, Wolf J, Bruce NG, Mehta S, Ustun-Pruss A (2013) Solid fuel use for household cooking: country and regional estimates for 1980–2010. Environ, Health Perspect 127:784–790

    Article  Google Scholar 

  14. Chambers S, Lobb A, Butler L, Harvey K, Traill WB (2007) Local, national and imported foods: a qualitative study. Appetite 49:2008–2013

    Google Scholar 

  15. Costa LJ, Trugilho PF, Lima JT, Simetti R, Bastos TA (2017) Caracterização mecânica do carvão vegetal de clones de Corymbia (Mechanical characterization of charcoal from clones of Corymbia). Sci Forestalis 45:629–639

    Google Scholar 

  16. Das I, Jagger P, Yeatts K (2017) Biomass cooking fuels and health outcomes for women in Malawi. EcoHealth 4:7–19

    Article  Google Scholar 

  17. Demirbas A (2004) Relationships between carbonization temperature and pyrolysis products from biomass. Energy Explor Exploit 22:411–420

    CAS  Article  Google Scholar 

  18. Desalu OO, Adekoya AO, Ampitan BA (2010) Increased risk of respiratory symptoms and chronic bronchitis in women using biomass fuels in Nigeria. J Bras Pneumologia 36:441–446

    Article  Google Scholar 

  19. Dias Júnior AF, Andrade AM, Costa DS Jr (2014) Caracterização de briquetes produzidos com resíduos agroflorestais (Characterization of briquettes produced with agroforestry residues). Pesquisa Florestal Brasileira (Brazilian Forestry Research) 34:225–234

    Article  Google Scholar 

  20. Dias Júnior AF, Brito JO, Andrade CR (2015a) Granulometric influence on the combustion of charcoal for barbecue. Revista Árvore, 39

  21. Dias Júnior AF, Andrade CR, Brito JO, Milan M (2015b) Desdobramento da função qualidade na avaliação da qualidade do carvão vegetal utilizado para cocção de alimentos (Unfolding of the quality function in the evaluation of the quality of charcoal used for cooking food). Floresta & Ambiente (Forest & Environment), 22

  22. Dias Júnior AF, Pirola LP, Takeshita S, Lana AQ, Brito JO, Andrade AM (2016) Higroscopicity of charcoal produced in different temperatures. Cerne 22:423–430

    Article  Google Scholar 

  23. Dias Júnior AF, Andrade CR, Brito JO, Lira SP, Andrade AM, Souza ND (2018) Polycyclic aromatic hydrocarbons in the organic phase extracted from charcoal for barbecue. Rev. Árvore, 41

  24. Dias Júnior AF, Andrade CR, Milan M, Brito JO, Andrade AM, Souza ND (2020) Quality function deployment (QFD) reveals appropriate quality of charcoal used in barbecue. Scientia Agricola, 77

  25. DIN (2010) EN 14918: Determination of calorific value. Deutsches Institut für Normung, Berlin: CEN: 63

  26. Ding T, Gu L, Li T (2011) Influence of steam pressure on physical and mechanical properties of heat-treated Mongolian pine lumber. Eur J Wood Prod 69:121–126

    Article  Google Scholar 

  27. Duedahl-Olesen L, Aaslyng M, Meinert L, Christensen T, Jensen AH, Binderup ML (2015) Polycyclic aromatic hydrocarbons (PAH) in Danish barbecued meat. Food Control 57:169–176

    CAS  Article  Google Scholar 

  28. Gordon SB, Bruce NG, Grigg J, Hibberd PL, Kurmi OP, Hubert Lam KB, Mortimer K (2014) Respiratory risks from household air pollution in low and middle income countries. Lancet Respiratory Med Commission 2:823–860

    Article  Google Scholar 

  29. Grioui N, Halouani K, Zoulalian A, Halouani F (2007) Experimental study of thermal effect on olive wood porous structure during carbonization. Maderas, Ciencia y Tecnologia, p 9

    Google Scholar 

  30. Gysel N, Welch WA, Chen CL, Dixit P, Cocker DR, Karavalakis G (2017) Particulate matter emissions and gaseous air toxic pollutants from commercial meat cooking operations. J Environ Sci 1

  31. Huang Y, Shen H, Chen H, Wang R, Zhang Y, Su S, Chen Y, Lin N, Zhuo S, Zhong Q, Wang X, Liu J, Li B, Liu W, Tao S (2014) Quantification of global primary emissions of PM2.5, PM10 and TSP from combustion and industrial process sources. Environ Sci Technol 48:13834–13843

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Kaliyan N, Morey RV (2010) Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Biores Technol 101:1082–1090

    CAS  Article  Google Scholar 

  33. Klose W, Schinkel A (2002) Measurement and modelling of the development of pore size distribution of wood during pyrolysis. Fuel Process Technol 77:459–466

    Article  Google Scholar 

  34. Kreyling WG, Semmler-Behnke M, Moller W (2006) Health implications of nanoparticles. J Nanopart Res 8:543–562

    CAS  Article  Google Scholar 

  35. Leavey A, Patel S, Martinez R, Mitroo D, Fortenberry C, Walker M, Williams B, Biswas P (2017) Organic and inorganic speciation of particulate matter formed during different combustion phases in an improved cookstove. Environ Res 158:33–42

    CAS  PubMed  Article  Google Scholar 

  36. Manly BJF (2008) Métodos estatísticos multivariados: uma introdução (Multivariate statistical methods: an introduction), 3rd edn. Bookman, Porto Alegre

    Google Scholar 

  37. Martins MP, Benicio EL, Dias Júnior AF, Almeida RB, Carvalho AM, Yamaji FM (2016) Produção e avaliação de briquetes de finos de carvão vegetal compactados com resíduo celulósico proveniente da indústria de papel e celulose (Production and evaluation of briquettes from charcoal fines compacted with cellulosic residue from the paper and cellulose industry). Revista Árvore (Brazilian J Forest Sci) 40:173–180

    Article  Google Scholar 

  38. Mingoti AS (2005) Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada (Data analysis using multivariate statistical methods: an applied approach). UFMG, Belo Horizonte, p 297p

    Google Scholar 

  39. North CM, Valeri L, Hunt PW, Mocello AR, Martin JN, Boum Y, Haberer JE, Bangsberg DR, Christiani DC, Siedner MJ (2017) Cooking fuel and respiratory symptoms among people living with HIV in rural Uganda. Eur Respiratory Soc 3:1–6

    Google Scholar 

  40. Obdzinski S (2012) Analysis of usability of potato pulp as solid fuel. Fuel Process Technol 94:67–74

    Article  CAS  Google Scholar 

  41. Quirino WF, Brito JO (1991) Características e índice de combustão de briquetes de carvão vegetal (Characteristics and combustion index of charcoal briquettes). Brasília: Laboratório de Produtos Florestais—LPF (Série Técnica, 13) (Forest Products Laboratory—FPL (Technical Series, 13)). 14p

  42. Rangel AA (2012) Anatomia comparada do lenho e do carvão aplicada na identificação de 76 espécies da Amazônia no estado do Pará, Brasil (Compared anatomy of wood and coal applied to the identification of 76 species in the Amazon in the state of Pará, Brazil). Dissertação (Mestrado em Recursos Florestais) (Dissertation (Master in Forest Resources)). Escola Superior de Agricultura “Luiz de Queiroz”—ESALQ/USP (School of Agriculture “Luiz de Queiroz”—ESALQ/USP). Piracicaba 249p

  43. Razuan R, Finney KN, Chen Q, Sharifi VN, Swithenbank J (2011) Pelletised fuel production from palm kernel cake. Fuel Process Technol 92:609–615

    CAS  Article  Google Scholar 

  44. Rosa RA, Chaves Arantes MD, Paes JB, Andrade WSDP, Moulin JC (2012) Qualidade do carvão vegetal para o consumo doméstico (Quality of charcoal for domestic consumption). J Biotechnol Biodiversity 3:41–48

    CAS  Article  Google Scholar 

  45. Rueda CV, Baldi G, Gasparri I, Jobbágy EG (2015) Charcoal production in the Argentine Dry Charcoal: where, how and who? Energy Sustain Dev 27:46–53

    Article  Google Scholar 

  46. São Paulo: Secretaria de Agricultura e Abastecimento (Secretariat of Agriculture and Supply) (2015) Resolução nº 40 SAA, de 14 de dezembro de 2015 (SAA Resolution 40, of December 14, 2015.). Diário Oficial do Poder Executivo (Official Gazette of the Executive Branch), São Paulo

  47. Shen HZ, Huang Y, Wang R, Zhu D, Li W, Shen GF, Wang B, Zhang Y, Chen Y, Lu Y (2013) Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol 47:6415–6424

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. Silva MRS, Ribeiro EAS, Barbosa JP, Alves Júnior FTA, Guedes MC, Pinheiro PG, Bufalino L (2020) Quality attributes of commercial charcoals produced in Amapá, a Brazilian state located in the Amazonia. Environ Dev Sustain 22:719–732

    Article  Google Scholar 

  49. Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113:947–955

    PubMed  PubMed Central  Article  Google Scholar 

  50. Sparrevik M, Cornelissen G, Sparrevik M, Adam C, Martinsen V, Cornelissen G (2015) Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved “retort” kilns. Biomass Bioenerg 72:65–73

    CAS  Article  Google Scholar 

  51. Surup GR, Timko MT, Deike R, Schubert D, Foppe M, Trubetskaya A (2019) The effect of feedstock origin and temperature on the structure and reactivity of char from pyrolysis at 1300–2800 °C. Fuel 235:306–316

    CAS  Article  Google Scholar 

  52. Utell MJ, Frampton MW (2000) Acute health effects of ambient air pollution: the ultrafine particle hypothesis. J Aerosol Med 13:355–359

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. Vicente ED, Vicente A, Evtyugina M, Carvalho R, Tarelho LAC, Oduber FL, Alves C (2018) Particulate and gaseous emissions from charcoal combustion in barbecue grills. Fuel Process Technol 176:296–306

    CAS  Article  Google Scholar 

  54. Viksna IS, Bartkevic V, Kuka A, Morozovs A (2008) Polycyclic aromatic hydrocarbons in meat smoked with different types of wood. Food Chem 110:794–797

    Article  CAS  Google Scholar 

  55. Vital BR, Carneiro AC, Cruz FM, Ribeiro KVG, Loures NG, Nacif AP (2014) Manual de identificação de carvão vegetal (Charcoal identification manual). Viçosa, MG: Ed. UFV

  56. Wang R, Tao S, Wang W, Liu J, Shen H, Shen G, Wang B, Liu X, Li W, Huang Y et al (2012) Black carbon emissions in China from 1949 to 2050. Environ Sci Technol 46:7595–7603

    CAS  PubMed  Article  Google Scholar 

  57. Warnes A (2008) Savage barbecue: race, culture and the invention of America’s first food. British Library, Geórgia, Georgia, United Stats, p 201p

    Google Scholar 

  58. Wongmaneepratip W, Vangnai K (2017) Effects of oil types and pH on carcinogenic polycyclic aromatic hydrocarbons (PAHs) in grilled chicken. Food Control 79:119–125

    CAS  Article  Google Scholar 

  59. Zhao X, Hu Q, Wang X, He Q, Zhang Z, Shen R (2015) Composition profiles of organic aerosols from Chinese residential cooking: case study in urban Guangzhou, south China. J Atmos Chem 72:1–18

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We extend thanks to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Instituto de Pesquisas e Estudos Florestais (IPEF) for granting scholarships and the Sindicato de Carvão e Lenha do Estado de São (Sincal) for opening discussions on charcoal grilling.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Álison Moreira da Silva.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dias Júnior, A.F., Andrade, C.R., Lana, A.Q. et al. Tips on the variability of BBQ charcoal characteristics to assist consumers in product choice. Eur. J. Wood Prod. (2021). https://doi.org/10.1007/s00107-021-01659-5

Download citation