Treatability of wood for pressure treatment processes: a literature review

Abstract

Inadequate and non-uniform penetration of preservatives into refractory wood species is a main concern in the wood preservation industry for pressure processes. Although the treatability of wood is greatly related to its porous structure, it may be influenced by other parameters like wood moisture content, drying technique, preservative formulation and treatment process. General principles of the wood treatability measurement by macro- and microscale approaches as well as by analytical techniques are discussed. Several innovative strategies have been developed to enhance the treatability of wood. Some strategies are currently being used in the industry, some have a potential for industrial upscaling, while others still remain at the laboratory scale. This review also involves a comprehensive review of recent progress to date in improving this physical property of wood.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

CCA:

Chromated copper arsenate

ACZA:

Ammoniacal copper zinc arsenate

ACQ:

Alkaline copper quat

CA:

Copper azole

CCB:

Copper chrome boron

MCA:

Micronized copper azole

MCQ:

Micronized copper quaternary

Cu-8:

Copper-8-quinolinolate

ACC:

Acid copper chromate

CN:

Copper naphthenate

References

  1. Acda MN, Morrel JJ, Levien L (2001) Supercritical fluid impregnation of selected wood species with tebuconazole. Wood Sci Technol 35:127–136. https://doi.org/10.1007/s002260100086

    CAS  Article  Google Scholar 

  2. Adamopoulos S, Passialis C, Voulgaridis E (2010) Ring width, latewood proportion and density relationships in black locust wood of different origins and clones. IAWA J 31(2):169–178. https://doi.org/10.1163/22941932-90000014

    Article  Google Scholar 

  3. Afrouzi YM, Marzbani P, Omidvar A (2015) The effect of moisture content on the retention and distribution of nano-titanium dioxide in the wood. Maderas-Cienc Tecnol 17(2):385–390. https://doi.org/10.4067/S0718-221X2015005000036

    CAS  Article  Google Scholar 

  4. Ahmed SA, Chung SK (2011) Permeability of Tectona grandis L. as affected by wood structure. Wood Sci Technol 45:487–500. https://doi.org/10.1007/s00226-010-0335-5

    CAS  Article  Google Scholar 

  5. Ahmed SA, Chong SH, Hong SH et al (2010) Effect of moisture content and wood structure on the amenability of Japanese red pine (Pinus densiflora S. et Z.) to liquid treatment. Wood Sci Technol 38(2):108–116. https://doi.org/10.5658/WOOD.2010.38.2.108

    Article  Google Scholar 

  6. Ahmed SA, Chun SK, Miller RB et al (2011) Liquid penetration in different cells of two hardwood species. J Wood Sci 57:179–188. https://doi.org/10.1007/s10086-010-1168-4

    Article  Google Scholar 

  7. Ahmed SA, Person MS, Hansson L, Moren T (2013) Evaluation of preservative distribution in thermally modified European aspen and birch board using computed tomography and scanning electron microscopy. J Wood Sci 59:57–66. https://doi.org/10.1007/s10086-012-1299-x

    CAS  Article  Google Scholar 

  8. Amburgey TL, Bame HM, Sanders MG (2000) Application of mechanical stress to improve wood treatability. US Patent app. Pub. US6142198A

  9. Archer K, Lebow S (2006) Wood preservation. In: Walker JCF (ed) Primary wood processing, principles and practice, 2nd edn. USDA, Madison, pp 297–338

    Google Scholar 

  10. Arsenault RD (1973) Factors influencing the effectiveness of preservative systems. In: Nicholas DD (ed) Wood deterioration and its prevention by preservative treatments, vol 2. Syracuse University Press, New York, pp 121–278

    Google Scholar 

  11. Avramidis S (1988) Experiments on the effect of ultrasonic energy on the absorption of preservatives by wood. Wood Fiber Sci 20(3):397–403

    Google Scholar 

  12. Avramidis S (2007) Bound water migration in wood. In: Perré P (ed) Fundamentals of wood drying. Nancy, A.R.BO.LOR, pp 105–124

    Google Scholar 

  13. AWPA (2019a) A9-18 standard method for analysis of treated wood and treating solutions by X-ray spectroscopy. AWPA book of standards. American Wood Protection Association, Birmingham

    Google Scholar 

  14. AWPA (2019b) A21-16 standard methods for analysis of wood and wood treating solutions by inductively coupled plasma emission spectrometry. AWPA book of standards. American Wood Protection Association, Birmingham

    Google Scholar 

  15. AWPA (2019c) A28-14 standard method for determination of propiconazole and tebuconazole in waterborne formulations and in treating solutions by HPLC. AWPA book of standards. American Wood Protection Association, Birmingham

    Google Scholar 

  16. Bailey IW (1913) The preservation treatment of wood. II The structure of the pit membranes in the tracheids of conifers and their relation to the penetration of gases, liquids and finely divided solids into green and seasoned wood. For Quart 11:12–20

    Google Scholar 

  17. Bailey PJ, Preston RD (1970) Some aspects of softwood permeability. II flow of polar and nonpolar liquids through sapwood and heartwood of Douglas fir. Holzforschung 24(2):37–45. https://doi.org/10.1515/hfsg.1970.24.2.37

    Article  Google Scholar 

  18. Bak M, Nemeth R (2018) Effect of different nanoparticle treatment on the decay resistance of wood. BioRes 13(4):7886–7899. https://doi.org/10.15376/biores.13.4.7886-7899

    CAS  Article  Google Scholar 

  19. Banks WB, Levy JF (1980) The effects of cell wall swelling on the permeability of grand fir wood. Wood Sci Technol 14(1):49–62. https://doi.org/10.1007/BF00353463

    Article  Google Scholar 

  20. Bauch J, Liese W, Berndt H (1970) Biological investigations for the improvement of the permeability of softwoods. Holzforschung 24(6):199–205

    Article  Google Scholar 

  21. Baysal E, Yalinkilic MK (2005) A new boron impregnation technique of wood by vapor boron of boric acid to reduce leaching boron from wood. Wood Sci Technol 39:187–198. https://doi.org/10.1007/s00226-005-0289-1

    CAS  Article  Google Scholar 

  22. Behr G, Larnøy E, Bues CT (2010) Treatability variation of Scots pine heartwood from northern Europe. In: Meier P (ed) Proceedings of the 6th meeting of the nordic-baltic network in wood material science and engineering (WSE). Tallinn University of Technology Press, Tallinn, pp 86–92

  23. Berrocal A, Rodriguez-Zuniga A, Veja-Baudrit J, Noguera SC (2014) Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species. Wood Fiber Sci 46(4):527–538

    Google Scholar 

  24. Biziks V, Bicke S, Militz H (2019) Penetration depth of phenol-formaldehyde (PF) resin into beech wood studied by light microscopy. Wood Sci Technol 53:165–176. https://doi.org/10.1007/s00226-018-1058-2

    CAS  Article  Google Scholar 

  25. Bolton AJ, Knowles SJ, Vianez BF (1987) The role of intervessel pits and vessel plugs in determining flow pathways through and between vessels in Sycamore (Acer pseudoplatanus L.). J Exp Bot 38(11):1857–1865. https://doi.org/10.1093/jxb/38.11.1857

    Article  Google Scholar 

  26. Booker RE, Evans JM (1994) The effect of drying schedule on the radial permeability of Pinus radiata D. Don Holz Roh Werkst 52(3):150–156. https://doi.org/10.1007/BF02615211

    Article  Google Scholar 

  27. Boone RS (1992) Drying of southern pine poles for preservative treatment. In: Barnes HM, Amburgey TL (eds) Proceedings of the 1st southeastern pole conference. Forest Products Society, Madison, pp 157–162

  28. Boonstra MJ, Rijsdijk JF, Sander C, Kegel E, Tjeerdsma B, Militz H, Stevens M (2006) Microstructural and physical aspects of heat treated wood. Part 1. Softwoods. Maderas-Cienc Tecnol 8(3):193–208. https://doi.org/10.4067/s0718-221x2006000300007

    CAS  Article  Google Scholar 

  29. Bouffier LA, Gartner BL, Domec JC (2003) Wood density and hydraulic properties of ponderosa pine from the Willamette Valley vs. the cascade mountains. Wood Fiber Sci 35(2):217–233

    CAS  Google Scholar 

  30. Bramhall G (1971) The validity of Darcy’s law in the axial penetration of wood. Wood Sci Technol 5(2):121–134. https://doi.org/10.1007/BF01134223

    Article  Google Scholar 

  31. Buckman SJ, Schmitz H, Gortner RA (1935) A study of certain factors influencing the movement of liquids in wood. J Phys Chem 39:103–120. https://doi.org/10.1021/j150361a008

    CAS  Article  Google Scholar 

  32. Cai L, Oliveira LC (2007) Gas permeability of wetwood and normal wood of Subalpine fir in relation to drying. Dry Technol 25(3):501–505. https://doi.org/10.1080/07373930601184072

    Article  Google Scholar 

  33. Cao J, Kamdem DP (2005) Microdistribution of copper in copper-ethanolamine (Cu-EA) treated Southern yellow pine (Pinus spp.) related to density distribution. Holzforschung 59(1):82–89. https://doi.org/10.1515/HF.2005.013

    CAS  Article  Google Scholar 

  34. Chandler WS, Morrell JJ (1999) Effect of incising on the strength of green Douglas-fir lumber. For Prod J 49(9):55–58

    Google Scholar 

  35. Cheng KJ (2015) Reducing the surface checking of deck-boards exposed to natural weathering: effects of wood species and surface profiling. Dissertation, University of British Columbia

  36. Chou CK, Chandler JA, Preston RD (1973) Microdistribution of metal elements in wood impregnated with a copper-chrome-arsenic preservative as determined by analytical electron microscopy. Wood Sci Technol 7(2):151–160. https://doi.org/10.1007/BF00351157

    Article  Google Scholar 

  37. Civardi C, Schwarze FW, Wick P (2015) Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles. Environ Pollut 200:126–132. https://doi.org/10.1016/j.envpol.2015.02.018

    CAS  Article  PubMed  Google Scholar 

  38. Civardi C, Bulcke JVD, Schubert M et al (2016) Penetration and effectiveness of micronized Copper in refractory wood species. PLoS One 11(9):1–14. https://doi.org/10.1371/journal.pone.0163124

    CAS  Article  Google Scholar 

  39. Comstock GL, Côté WA (1968) Factors affecting permeability and pit aspiration in coniferous sapwood. Wood Sci Technol 2(4):279–291. https://doi.org/10.1007/BF00350274

    CAS  Article  Google Scholar 

  40. Cooper P, Morris P (2007) Challenges in treating Canadian species. In: Proceedings of 28th annual general meeting. Canadian wood preservation association, Quebec, pp 9–20

  41. Cooper PA, Ung YT (2009) Effect of preservative type and natural weathering on preservative gradients in southern pine lumber. Wood Fiber Sci 41(3):229–235

    CAS  Google Scholar 

  42. Cǒté WA (1963) Structural factors affecting the permeability of wood. J polym sci Part C 2:231–242. https://doi.org/10.1002/polc.5070020122

    Article  Google Scholar 

  43. Craciun R, Moeller R, Wittenzellner J et al (2011) A comparative study and evaluation of methodologies used for determining wood preservative penetration. In: Proceedings of 42nd annual meeting of the international research group on wood protection. IRG Secretariat, IRG/WP 11-20475, Queenstown

  44. Dale A, Morris PI, Uzunovic A, Symons P, Stirling R (2019) Biological incising of lodgepole pine and white spruce lumber with Dichomitus squalens. Eur J Wood Prod 77(6):1161–1176. https://doi.org/10.1007/s00107-019-01471-2

    CAS  Article  Google Scholar 

  45. Dalla-Salda G, Martinez-Meier A, Cochard H, Rozenberg P (2009) Variation of wood density and hydraulic properties of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) clones related to a heat and drought wave in France. For Ecol Manag 257(1):182–189. https://doi.org/10.1016/j.foreco.2008.08.019

    Article  Google Scholar 

  46. Damay J, Fredon E, Gerardin P, Lemmens P (2015) Evaluation of axial impregnation as an alternative to classical wood vacuum pressure impregnation method. Maderas-Cienc Tecnol 17(4):883–892. https://doi.org/10.4067/S0718-221X2015005000077

    CAS  Article  Google Scholar 

  47. Dashti H, Tarmian A, Faezipour M et al (2012) Effect of presteaming on mass transfer properties of Fir wood (Abies alba L.); a gymnosperm species with torus margo pit membrane. BioRes 7(2):1907–1918

    CAS  Article  Google Scholar 

  48. Dashti H, Tarmian A, Faezipour M, Hedjazi S, Shahverdi M (2013) Mass transfer through microwave-treated fir wood (abies alba): a gymnosperm species with torus margo pit membrane. Dry Technol 31(3):359–364. https://doi.org/10.1080/07373937.2012.736908

    CAS  Article  Google Scholar 

  49. De Filpo G, Palermo AM, Rachiele F, Nicoletta FP (2013) Preventing fungal growth in wood by titanium dioxide nanoparticles. Int Biodeter Biodegr 85:217–222. https://doi.org/10.1016/j.ibiod.2013.07.007

    CAS  Article  Google Scholar 

  50. DeGroot RC (1994) Treatability of Western softwood and Red alder shakes. For Prod J 44(7/8):1–9

    Google Scholar 

  51. Demessie ES, Hassan A, Levien KL, Kumar S, Morrell JJ (1995) Supercritical carbon dioxide treatment: effect on permeability of Douglas-fir heartwood. Wood Fiber Sci 27(3):296–300

    CAS  Google Scholar 

  52. Dhamodaran TK, Gnanaharan R (2001) Optimizing the schedule for CCA impregnation treatment of Rubber wood. Holz Roh- Werkst 59:294–298. https://doi.org/10.1007/s001070100

    CAS  Article  Google Scholar 

  53. Dickinson DJ, Sorkhoh NAAH (1976) The microdistribution of wood preservatives. Scan Electron Microsc 9:549–554

    Google Scholar 

  54. Domeny J, Kois V, Dejmal A (2014) Microwave radiation effect on axial fluid permeability in false heartwood of Beech (Fagus sylvatica L.). BioRes 9(1):372–380. https://doi.org/10.15376/biores.9.1.372-380

    CAS  Article  Google Scholar 

  55. Doyle AK, Ruddick JN (1994) The microdistribution of alkylammonium compounds in ponderosa pine sapwood. Holzforschung 48(2):106–112. https://doi.org/10.1515/hfsg.1994.48.2.106

    CAS  Article  Google Scholar 

  56. Dullien FA (1992) Porous media: fluid transport and pore structure. Academic, New York

    Google Scholar 

  57. Durmaz S, Yildiz UC, Yildiz S (2015) Alkaline enzyme treatment of Spruce wood to increase permeability. BioRes 10(3):4403–4410. https://doi.org/10.15376/biores.10.3.4403-4410

    CAS  Article  Google Scholar 

  58. Elkins L, Morrell JJ, Leichti RJ (2007) Establishing a through-boring pattern for utility poles. Wood Fiber Sci 39(4):639–650

    CAS  Google Scholar 

  59. Ellwood EL, Ecklund BA (1959) Bacterial attack on pine logs in pond storage. For Prod J 9:283–292

    Google Scholar 

  60. Emaminasab M, Tarmian A, Pourtahmasi K (2015) Permeability of Poplar normal wood and tension wood bioincised by Physisporinus vitreus and Xylaria longipes. Int Biodeter Biodegr 105:178–184. https://doi.org/10.1016/j.ibiod.2015.09.003

    CAS  Article  Google Scholar 

  61. Emaminasab M, Tarmian A, Pourtahmasi K, Avramidis S (2016) Improving the permeability of Douglas-fir (Pseudotsuga menziesii) containing compression wood by Physisporinus vitreus and Xylaria longipes. Int Wood Prod J 7(3):110–115. https://doi.org/10.1080/20426445.2016.1155788

    Article  Google Scholar 

  62. EN 350 (2016) Durability of wood and wood-based products-testing and classification of the durability to biological agents of wood and wood-based materials. European Committee for Standardisation, Brussels

    Google Scholar 

  63. Enver M (1998) The effect of evacuation on treatability of wood. Dissertation, University of Melbourne

  64. Erickson HD (1970) Permeability of Southern Pine wood—a review. Wood Sci 2(3):149–158

    CAS  Google Scholar 

  65. Erickson HD, Balatinecz JJ (1964) Liquid flow path into wood using polymer techniques: Douglas-fir and styrene. For Prod J 14:293–299

    Google Scholar 

  66. Erickson HD, Crawford RJ (1959) The effects of several seasoning methods on the permeability of wood to liquids. Proc Annu Meet Am Wood Preserv Assoc 55:218–219

    Google Scholar 

  67. Erickson HD, Schmitz H, Gortner RA (1938) Directional permeability of seasoned wood to water and some factors which affect it. J Agric Res 56(10):711–746

    Google Scholar 

  68. Esmailpour A, Taghiyari HR, Gohchin M, Avramidis S (2019) On the fluid permeability of heat treated paulownia wood. Int Wood Prod J 10(2):55–63. https://doi.org/10.1080/2426445.2019.1617954

    Article  Google Scholar 

  69. Evans PD (2003) Emerging technologies in wood protection. For Prod J 53(1):14–22

    Google Scholar 

  70. Evans PD (2016) The effects of incising on the checking of wood: a review. Int Wood Prod J. https://doi.org/10.1080/20426445.2015.1112936

    Article  Google Scholar 

  71. Evans PD, Matsunaga H, Averdunkv H et al. (2014) Microdistribution of copper in Southern pine treated with particulate wood preservatives. In: Schultz TP, Goodell B, Nicholas DD (eds) Deterioration and protection of sustainable biomaterials. ACS Symposium Series, United States, pp 227–238. https://doi.org/10.1021/bk-2014-1158.ch013

  72. Fang F, Ruddick JN, Avramidis S (2001) Application of radio-frequency heating to utility poles. Part 1. Radio-frequency/vacuum drying of roundwood. For Prod J 51:56–60

    Google Scholar 

  73. Fernandes J, Kjellow AW, Henriksen O (2012) Modeling and optimization of the supercritical wood impregnation process—Focus on pressure and temperature. J Supercrit Fluids 66:307–314. https://doi.org/10.1016/j.supflu.2012.03.003

    CAS  Article  Google Scholar 

  74. Fleischer HO (1950) An anatomical comparison of refractory and easily treated Douglas-fir heartwood. Proc Annu Meet Am Wood Preserv Assoc 46:152–157

    Google Scholar 

  75. Flynn KA (1995) A review of the permeability, fluid flow, and anatomy of spruce (Picea spp.). Wood Fiber Sci 27(3):278–284

    CAS  Google Scholar 

  76. Fogg PJ, Choong ET (1989) Effect of specimen length on longitudinal gas permeability in hardwoods. Wood Fiber Sci 21(1):101–104

    Google Scholar 

  77. Freeman MH, McIntyre CR (2008) A comprehensive review of copper-based wood preservatives with a focus on new micronized or dispersed copper systems. For Prod J 58(11):1–27

    Google Scholar 

  78. Freeman MH, Shupe TF, Vlosky RP, Barnes HM (2003) Past, present, and future of the wood preservation industry. For Prod J 53(10):8–15

    Google Scholar 

  79. Freeman MH, McIntyre CR, Jackson D (2009) A critical and comprehensive review of boron in wood preservation. Proc AM Wood Prot Assoc 105:279–294

    Google Scholar 

  80. Furuno T, Imamura Y, Kajita H (2004) The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Sci Technol 37(5):349–361. https://doi.org/10.1007/s00226-003-0176-6

    CAS  Article  Google Scholar 

  81. Gezer D, Kustas S (2018) The effects of pre-ozone treatment on retention levels and the compression strength of spruce wood treated with ACQ and CCA. In: Proceedings of international forest products congress. ORENKO Congress Secretariat, Trabzon, pp 895–903

  82. Greaves H (1974) The microdistribution of copper-chrome-arsenic in preservative treated sapwoods using X-ray microanalysis in scanning electron microscopy. Holzforschung 28(6):193–200. https://doi.org/10.1515/hfsg.1974.28.6.193

    CAS  Article  Google Scholar 

  83. Griffin GR (1919) Bordered pits in Douglas fir: a study of the position of the torus in mountain and lowland specimens in relation to creosote penetration. J Forest 17(7):813–822

    Google Scholar 

  84. Gunzerodt H, Walker JCF, Whybrew K (1986) Compression rolling and hot-water soaking: effects on the drying and treatability of Nothofagus fusca heartwood. Nz J For Sci 16(2):223–236

    Google Scholar 

  85. Hansmann A, Gindl W, Wimmer R, Teischinger A (2002) Permeability of wood—a review. Wood Res 47(4):1–16

    Google Scholar 

  86. Hari NU, Simonsen J (1995) The pressure treatment of wood with sonic waves. For Prod J 45(9):1–7

    Google Scholar 

  87. Hassler CC, Slahor JJ, Gardner DJ (1999) A comparison of the treatability of southern Yellow pine to five Appalachian hardwoods. For Prod J 49(2):89–93

    Google Scholar 

  88. He S, Lin L, Fu F et al (2014) Microwave treatment for enhancing the liquid permeability of Chinese fir. BioRes 9(2):1924–1938. https://doi.org/10.15376/biores.9.2.1924-1938

    Article  Google Scholar 

  89. He X, Xiong X, Xie J et al (2017) Effect of microwave pretreatment on permeability and drying properties of wood. BioRes 12(2):3850–3863. https://doi.org/10.15376/biores.12.2.3850-3863

    CAS  Article  Google Scholar 

  90. Hermoso E, Vega A (2016) Effect of microwave treatment on the impregnability and mechanical properties of Eucalyptus globulus wood. Maderas-Cienc Tecnol 18(1):55–64. https://doi.org/10.4067/s0718-221x2016005000006

    Article  Google Scholar 

  91. Hernandez V, Avramidis S, Navarrete J (2012) Albino strains of Ophiostoma spp. fungi effect on Radiata pine permeability. Eur J Wood Prod 70:551–556. https://doi.org/10.1007/s00107-011-0586-3

    Article  Google Scholar 

  92. Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, Chichester

    Google Scholar 

  93. Homan WJ, Jorissen AJM (2004) Wood modification developments. Heron 49(4):361–386

    Google Scholar 

  94. Hong-Hai L, Qing-Wen W, Lin Y et al (2005) Modification of Larch wood by intensive microwave irradiation. J For Res 16(3):237–240

    Article  Google Scholar 

  95. Hughes AS, Murphy RJ, Gibson JF, Cornfield JA (1994) Electron paramagnetic resonance (EPR) spectroscopic analysis of copper based preservatives in Pinus sylvestris. Holzforschung 48(2):91–98. https://doi.org/10.1515/hfsg.1994.48.2.91

    CAS  Article  Google Scholar 

  96. Humar M, Thaler N (2017) Performance of copper treated utility poles and posts used in service for several years. Int Biodeterior Biodegradation 116:219–226. https://doi.org/10.1016/j.ibiod.2016.11.004

    CAS  Article  Google Scholar 

  97. Humar M, Thaler N, Lesar B (2011) Influence of wood swelling agents on penetration and copper leaching of copper-ethanolamine based wood preservative. In: Proceedings of 42nd annual meeting of the international research group on wood protection. IRG Secretariat, IRG/WP 11-30556, Queenstown

  98. Hunt GM, Garratt GA (1953) Wood Preservation, 2nd edn. McGraw Hill Book Co., New York

    Google Scholar 

  99. Isaacs P, Choong ET, Fogg PJ (1971) Permeability variation within a cotton wood tree. Wood Sci 3(4):231–237

    Google Scholar 

  100. Islam MN, Ando K, Yamauchi H et al (2007) Passive impregnation of liquid in impermeable lumber incised by laser. J Wood Sci 53:436–441. https://doi.org/10.1007/s10086-006-0878-0

    Article  Google Scholar 

  101. Islam MN, Ando K, Yamauchi H et al (2008) Comparative study between full cell and passive impregnation method of wood preservation for laser incised Douglas fir lumber. Wood Sci Technol 42:343–350. https://doi.org/10.1007/s00226-007-0168-z

    CAS  Article  Google Scholar 

  102. Islam MN, Ando K, Yamauchi H, Hattori N (2009) Effect of species and moisture content on penetration of liquid in laser incised lumber by the passive impregnation method. Eur J Wood Prod 67:129–133. https://doi.org/10.1007/s00107-008-0292-y

    CAS  Article  Google Scholar 

  103. Islam MN, Ando K, Yamauchi H et al (2014) Impregnation of laser incised wood of Douglas fir and Japanese cedar by dipping (passive impregnation) in solutions of copper azole (CuAz-B) and a fire retardant (PPC). Holzforschung 68(3):353–360. https://doi.org/10.1515/hf-2013-0140

    CAS  Article  Google Scholar 

  104. Jansen A, Pizzi A, Conradie WE (1985) The penetration characteristics of CCA preservatives in wood-radial/tangential, processes and species effects. Holz Roh- Werkst 43(5):181–186. https://doi.org/10.1007/BF02612121

    CAS  Article  Google Scholar 

  105. Johnson BR (1979) Permeability changes induced in three western conifers by selective bacterial inoculation. Wood Fiber Sci 11(1):10–21

    Google Scholar 

  106. Johnson BR, Giovik LR (1970) Effect of Trichoderma viride and a contaminating bacterium on microstructure and permeability of loblolly pine and Douglas fir. Proc Annu Meet Am Wood Preserv Assoc 66:234–242

    Google Scholar 

  107. Kakaras JA, Voulgaridis EV (1992) Effect of ponding, steaming and drill perforation on preservative treatment of Fir wood (Abies cephallonica L.) with CCB. Holz Roh-Werkst 50:275–279. https://doi.org/10.1007/BF02615350

    CAS  Article  Google Scholar 

  108. Kamke FA, Lee JN (2007) Adhesive penetration in wood-a review. Wood Fiber Sci 39(2):205–220

    CAS  Google Scholar 

  109. Kang SM, Paik KH, Kim GH (1997) Study on improving preservative treatability of Japanese larch heartwood by presteaming. J Korean Wood Sci Technol 25(1):15–22

    Google Scholar 

  110. Kang SM, Levien KL, Morrell JJ (2005) Supercritical fluid impregnation of wood with biocides using temperature reduction to induce deposition. Wood Sci Technol 39:328–338. https://doi.org/10.1007/s00226-005-0295-3

    CAS  Article  Google Scholar 

  111. Kang C, Kang W, Chung W et al (2008) Changes in anatomical features, air permeability and sound absorption capability of wood induced by delignification treatment. J Fac Agr Kyushu U53(2):479–483

    Google Scholar 

  112. Kang CW, Kim GC, Park HJ et al (2010) Changes in permeability and sound absorption capability of Yellow poplar wood by steam explosion treatment. J Fac Agr Kyushu U55(2):327–332

    Google Scholar 

  113. Kang SM, Cho MW, Kim KM et al (2012) Cyproconazole impregnation into wood using sub-and supercritical carbon dioxide. Wood Sci Technol 46:643–656. https://doi.org/10.1007/s00226-011-0434-y

    CAS  Article  Google Scholar 

  114. Kartal SN, Lebow ST (2002) Effects of incising on treatability and leachability of CCA-C-treated Eastern hemlock. For Prod J 52(2):44–48

    CAS  Google Scholar 

  115. Kartal SN, Terzi E, Woodward B et al. (2013) Removal of nano- and micronized-copper form treated wood by chelating agents. In: Proceedings of 44th annual meeting of the international research group on wood protection, IRG/WP 13-50294, Stockholm, pp 1–15

  116. Kartal SN, Terzi E, Yilmaz H, Goodell B (2015) Bioremediation and decay of wood treated with ACQ, micronized ACQ, nano-CuO and CCA wood preservatives. Int Biodeterior Biodegrad 99:95–101. https://doi.org/10.1016/j.ibiod.2015.01.004

    CAS  Article  Google Scholar 

  117. Keey RB, Langrish TAG, Walker JCF (2000) Kiln-drying of lumber. Springer, New York

    Google Scholar 

  118. Kelso WC Jr, Gertjejansen RO, Hossfeld RL (1963) The effect of air blockage upon the permeability of wood to liquids. Univ Minn Agric Exp Station Techn Bull 242:1–40

    Google Scholar 

  119. Kim GH, Kim JJ (2001) Effect of moisture content on treatability of Japanese red pine, Japanese larch, and ezo Spruce with Chromated copper arsenate. For Prod J 51(6):64–66

    CAS  Google Scholar 

  120. Kjellow AW, Henriksen O (2009) Supercritical wood impregnation. J Supercrit Fluids 50(3):297–304. https://doi.org/10.1016/j.supflu.2009.06.013

    CAS  Article  Google Scholar 

  121. Kobayashi Y, Iida I, Imamura Y, Watanabe U (1998) Drying and anatomical characteristics of Sugi wood attacked by bacteria during pond storage. J Wood Sci 44(6):432–437. https://doi.org/10.1007/BF00833406

    CAS  Article  Google Scholar 

  122. Kollmann FFP, Côté WA (1968) Principles of wood science and technology. Vol. 1: solid wood. Springer, Berlin

  123. Koran Z (1961) Permeability of a mountain-type Douglas fir stem containing included sapwood bands. Dissertation, University of British Columbia

  124. Krahmer RL, Cote WA (1963) Changes in coniferous wood cells associated with heartwood formation. TAPPI 46:42–49

    Google Scholar 

  125. Kumar S, Morrell JJ (1993) Effect of fatty acid removal on treatability of Douglas-fir. In: Proceedings of 24nd annual meeting of the international research group on wood protection. IRG Secretariat, IRG WP 92-1531, Orlando

  126. Kurisaki H, Mizumoto K (2005) Improvement in treatability of Siberian larch [Larix]. J Toyama For For Prod Res Center (Japan) 18:43–48

    Google Scholar 

  127. Kurti E, Heyd DV, Wylie RS (2005) Raman microscopy for the quantitation of propiconazole in White spruce. Wood Sci Technol 39(8):618–629. https://doi.org/10.1007/s00226-005-0035-8

    CAS  Article  Google Scholar 

  128. Lande S, Hoibo O, Larnoy E (2010) Variation in treatability of Scots pin (Pinus sylvestris) by the chemical modification agent furfuryl alcohol dissolved in water. Wood Sci Technol 44:105–118. https://doi.org/10.1007/s00226-009-0272-3

    CAS  Article  Google Scholar 

  129. Langrish TAG, Walker JCF (1993) Transport processes in wood. In: Walker JCF (ed) Primary wood processing, principles and practice, 2nd edn. USDA, Madison, pp 121–152

    Google Scholar 

  130. Larnøy E, Militz H, Eikenes M (2005) Uptake of chitosan based impregnation solutions with varying viscosities in four different European wood species. Holz Roh- Werkst 63(6):456–462. https://doi.org/10.1007/s00107-005-0014-7

    CAS  Article  Google Scholar 

  131. Lebow S (2010) Wood preservation. In: Ross RJ (ed) Wood handbook—wood as an engineering material. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, pp 1–27

    Google Scholar 

  132. Lebow ST, Morrell JJ (1993) Effect of steaming on treatability of Douglas-fir heartwood with sodium octaborate tetrahydrate. For Prod J 43(4):1–6

    Google Scholar 

  133. Lebow ST, Morrell JJ, Milota MR (1996) Western wood species treated with Chromated copper arsenate: effect of moisture content. For Prod J 46(2):1–5

    Google Scholar 

  134. Lebow S, Hatfield C, Abbott W (2005) Treatability of SPF framing lumber with CCA and borate preservatives. Wood Fiber Sci 37(4):605–614

    CAS  Google Scholar 

  135. Lebow S, Hatifield C, Halverson S (2006) Effect of source, drying method and treatment schedule on treatability of Red pine. In: Proceedings of one hundred second annual meeting of the American Wood Preservers’ Association, Austin, Texas, pp 39–43

  136. Lebow S, Ross R, Zelinka S (2014) Evaluation of wood species and preservatives for use in Wisconsin Highway Sign Posts. USDA Forest Service, Forest Products Laboratory, General Technical Report, FPL-GTR-231, pp 1–51

  137. Lehringer C, Richter K, Schwarze FWMR, Militz H (2009) A review on promising approaches for liquid permeability improvement in softwoods. Wood Fiber Sci 41(4):373–385

    CAS  Google Scholar 

  138. Lehringer C, Hillebrand K, Richter K et al (2010) Anatomy of bioincised Norway spruce wood. Int Biodeterior Biodegrad 64(5):346–355. https://doi.org/10.1016/j.ibiod.2010.03.005

    Article  Google Scholar 

  139. Lindgren RM (1952) Permeability of southern pine as affected by mold growth and other fungus infection. Proc Annu Meet Am Wood Preserv Assoc 48:158–174

    Google Scholar 

  140. Lindgren P (1976) Inspection of experimental Douglas-fir poles. Dorena Tap Line, Cottage Grove Oregon. In: Downey GL, Troxell HE (eds) Proceedings of sixth wood pole institute conference. Fort Collins, pp 41–64

  141. Liu M, Li C, Wang Q (2019a) Microstructural characteristics of Larch wood treated by high-intensity microwave. BioRes 14(1):1174–1184. https://doi.org/10.15376/biores.14.1.1174-1184

    CAS  Article  Google Scholar 

  142. Liu Z, Wang X, Zhang Y, Wen L, Zheng L, Cai L (2019b) Flow rate and fixation of ACQ-D preservative in poplar living tree after injection. Wood Sci Technol 53(2):373–391. https://doi.org/10.1007/s00226-019-01079-y

    CAS  Article  Google Scholar 

  143. Lucas S, Gonzalez E, Calvo MP, Palencia C, Alonso E, Cocero MJ (2007) Supercritical CO2 impregnation of Radiata pine with organic fungicides: effect of operating conditions and two-parameters modeling. J Supercrit Fluids 40(3):462–469. https://doi.org/10.1016/j.supflu.2006.08.003

    CAS  Article  Google Scholar 

  144. MacLean JD (1924) Relation of temperature and pressure to the absorption and penetration of zinc chloride solution into wood. Proc Annu Meet Am Wood Preserv Assoc 20:44–73

    Google Scholar 

  145. MacLean JD (1927) Relation of treating variables to the penetration and absorption of preservatives into wood. Part III. Effect of temperature and pressure on the penetration and absorption of coal tar creosote into wood. Proc Annu Meet Am Wood Preserv Assoc 23:52–70

    Google Scholar 

  146. MacLean JD (1952) Preservative treatment of wood by pressure methods. U.S. Department of Agriculture, Forest Service, Washington, DC, pp 1–160

    Google Scholar 

  147. Mader A, Schiro A, Brischetto M, Pizzo B (2011) Interactions and penetration of polymers and nanolatexes into wood: an overview. Prog Org Coat 71(2):123–135. https://doi.org/10.1016/j.porgcoat.2011.02.007

    CAS  Article  Google Scholar 

  148. Mai C, Kües U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63(5):477–494. https://doi.org/10.1007/s00253-003-1411-7

    CAS  Article  PubMed  Google Scholar 

  149. Matsumura J, Booker RE, Ridoutt BG et al (1999) Impregnation of radiata pine wood by vacuum treatment II: effect of pre-steaming on wood structure and resin content. J Wood Sci 45:456–462. https://doi.org/10.1007/BF00538953

    CAS  Article  Google Scholar 

  150. Matsunaga H, Matsumura J, Oda K (2001) Distribution of inorganic elements in wood impregnated with preservative solutions II. Effect of anatomical characteristics on microdistribution of preservatives in Cryptomeria japonica sapwood. Mokuzai Gakkaishi 47(5):383–388

    CAS  Google Scholar 

  151. Matsunaga M, Matsunaga H, Kataoka Y, Matsui H (2005) Improved water permeability of Sugi heartwood by pretreatment with supercritical carbon dioxide. J Wood Sci 51:195–197. https://doi.org/10.1007/s10086-005-0694-y

    CAS  Article  Google Scholar 

  152. Matsunaga H, Kiguchi M, Evans P (2007) Micro-distribution of metals in wood treated with a nano-copper wood preservative. In: Proceedings of 38nd annual meeting of the international research group on wood protection. IRG/WP 07-40360, IRG Secretariat, Jackson Lake, Wyoming

  153. Matsunaga H, Kiguchi M, Roth B, Evans PD (2008) Visualisation of metals in pine treated with preservative containing copper and iron nanoparticles. IAWA J 29(4):387–396. https://doi.org/10.1163/22941932-90000193

    Article  Google Scholar 

  154. Matsunaga H, Kiguchi M, Evans PD (2009) Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood. J Nanopart Res 11:1087–1098. https://doi.org/10.1007/s11051-008-9512-y

    CAS  Article  Google Scholar 

  155. Matsunaga H, Kataoka Y, Kiguchi M, Evans P (2010) Copper nanoparticles in southern pine wood treated with a micronised preservative: can nanoparticles penetrate the cell walls of tracheids and ray parenchyma? In: Proceedings of 41nd annual meeting of the international research group on wood protection. IRG Secretariat, IRG/WP 10-30547, Biarritz, France

  156. Maturbongs L, Schneider MH (1996) Treatability and CCA preservative distribution within ten Indonesian hardwoods. Wood Fiber Sci 28(2):259–267

    CAS  Google Scholar 

  157. Meijer MD, Militz N (1998) Wet adhesion measurements of wood coatings. Holz Roh- Werkst 56(5):306. https://doi.org/10.1007/s001070050324

    Article  Google Scholar 

  158. Messner K, Bruce A, Bongers HPM (2003) Treatability of refractory wood species after fungal pre-treatment. In: Proceedings of the first European conference on wood modification, Ghent, pp 389–401

  159. Meyer RW (1971) Influence of pit aspiration on earlywood permeability of Douglas-Fir. Wood Fiber Sci 2(4):328–339

    Google Scholar 

  160. Meyer RW (1974) Effect of enzyme treatment on bordered-pit ultrastructure, permeability, and toughness of the sapwood of three western conifers. Wood Sci 6:220–230

    Google Scholar 

  161. Miller DJ, Graham RD (1963) Treatability of Douglas-fir from western United States. Proc Annu Meet Am Wood Preserv Assoc 59:218–222

    Google Scholar 

  162. Momohara I, Saito S, Ohmura W, Kiguchi M (2009) Effect of drying method as a pretreatment on CUAZ preservative impregnation in Japanese cedar logs. J Wood Sci 55:441–445. https://doi.org/10.1007/s10086-009-1056-y

    CAS  Article  Google Scholar 

  163. Morrell JJ, Lebow ST (1991) Borate treatment of seasoned western hemlock and Douglas-fir lumber. For Prod J 41:27–29

    CAS  Google Scholar 

  164. Morrell JJ, Morris PI (2002) Methods for improving preservative penetration into wood: a review. In: Proceedings of 33rd annual meeting of the international research group on wood protection, IRG/WP 02-40227, Cardiff

  165. Morrell JJ, Norton J (2009) Potential for using through-boring to improve groundline treatment of Australian wood species: a preliminary study. For Prod J 59(9):61–66

    Google Scholar 

  166. Morrell JJ, Gupta R, Winandy JE, Riyabto DS (1998) Effect of incising and preservative treatment on shear strength of nominal 2-inch lumber. Wood Fiber Sci 30(4):374–378

    CAS  Google Scholar 

  167. Morrell JJ, Paillard A, Gartner B et al (2003) Variations in longitudinal permeability of coastal western hemlock. Wood Fiber Sci 35(3):397–400

    CAS  Google Scholar 

  168. Morris PI, Byrne A (1997) The effect of DDAC on the penetration of borates into Western hemlock. For Prod J 47(4):71–73

    CAS  Google Scholar 

  169. Morris PI, Byrne A, Mackay JFG, McFarling SM (1997) The effect of steaming prior to pressure treatment on the penetration of borates into Western hemlock. For Prod J 47(3):62–65

    CAS  Google Scholar 

  170. Morris PI, McFarling SM, Zahora AR (2002) Treatability of refractory species with amine and amine/ammoncal formulations of ACQ. For Prod J 52(10):37–42

    CAS  Google Scholar 

  171. Mugabi P, Rypstra T, Vermaas HF, Nel DG (2011) Effect of kiln drying schedule on the quality of South African grown Eucalyptus grandis poles. Eur J Wood Prod 69(1):19–26. https://doi.org/10.1007/s00107-009-0392-3

    Article  Google Scholar 

  172. Muin M, Adachi A, Inoue M et al (2003) Feasibility of supercritical carbon dioxide as a carrier solvent for preservative treatment of wood-based composites. J Wood Sci 49:65–72. https://doi.org/10.1007/s100860300011

    CAS  Article  Google Scholar 

  173. Nasswettrova A, Smira P, Sanace T (2014) Axial permeability of Beech wood treated by microwave heating for distilled water. Wood Res-Slovakia 59(1):25–38

    Google Scholar 

  174. Newbill MA, James R, Asgharian D, Morrell JJ (1999) Full-length through-boring: effect on pentachlorophenol penetration and retention and residual strength of Douglas-fir poles. For Prod J 49(1):73

    CAS  Google Scholar 

  175. Omidvar A, Schneider MH (2004) Evaluation of fluid distribution in pressure treated wood in different flow directions. In: Proceedings of 35th annual meeting of the international research group on wood protection, IRG/WP 04-40281, Ljubljana

  176. Owoyemi JM (2010) The influence of preservative viscosity on fluid absorption by Gmelina arborea wood. For Prod J 3:32–39

    Google Scholar 

  177. Pallardy SG (2008) Vegetative Growth. In: Pallardy SG (ed) Physiology of woody plants, 3rd edn. Academic, San Diego, pp 39–86

    Google Scholar 

  178. Pánek M, Reinprecht L (2008) Bio-treatment of spruce wood for improving of its permeability and soaking. Part 1: Direct treatment with the bacterium Bacillus subtilis. Wood Res-Slovakia 53(2):1–12

    Google Scholar 

  179. Pánek M, Reinprecht L, Mamonova M (2013) Trichoderma viride for improving Spruce wood impregnability. BioRes 8(2):1731–1746. https://doi.org/10.15376/biores.8.2.1731-1746

    Article  Google Scholar 

  180. Pang SJ, Oh JK, Hong JP, Lee SJ (2017) Effect of incising on the long-term biodeterioration resistance of alkaline copper quaternary (ACQ) treated wood. Eur J Wood Prod 75:777–783. https://doi.org/10.1007/s00107-016-1151-x

    CAS  Article  Google Scholar 

  181. Pařil P, Baar J, Čermák P, Rademacher P, Prucek R, Sivera M, Panáček A (2017) Antifungal effects of copper and silver nanoparticles against white and brown-rot fungi. J Mater Sci 52(5):2720–2729. https://doi.org/10.1007/s10853-016-0565-5

    CAS  Article  Google Scholar 

  182. Passialis C, Voulgaridis E, Adamopoulos S, Matsouka M (2008) Extractives, acidity, buffering capacity, ash and inorganic elements of black locust wood and bark of different clones and origin. Holz Roh- Werkst 66(6):395–400. https://doi.org/10.1007/s00107-008-0254-4

    CAS  Article  Google Scholar 

  183. Pavia KJ (2006) A review of double-diffusion wood preservation suitable for Alaska. PNW-GTR-676, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, pp 1–23

  184. Pazdrowski W, Jelonek T, Tomczak A, Stypula I, Splawa-Neyman S (2007) Proportion of sapwood and heartwood and selected biometric features in larch trees (Larix decidua Mill.). Wood Res-Slovakia 54(4):1–16

    Google Scholar 

  185. Pereira L, Flores-Borges DN, Bittencourt PR, Mayer JL, Kiyota E, Araújo P, Mazzafera P (2018) Infrared nanospectroscopy reveals the chemical nature of pit membranes in water-conducting cells of the plant xylem. Plant Physiol 177(4):1629–1638. https://doi.org/10.1104/pp.18.00138

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  186. Perré P (2000) Fundamental aspects of fuid migration in beech. In: 2nd workshop “quality drying of hardwood”, COST Action E15, Sopron, Hungary

  187. Perré P (2007) Fundamentals of wood drying. A.R.BO.LOR, France

    Google Scholar 

  188. Petrič M, Murphy RJ, Morris I (2000) Microdistribution of Some copper and zinc containing waterborne and organic solvent wood preservatives in Spruce wood cell walls. Holzforschung 54(1):23–26. https://doi.org/10.1515/HF.2000.004

    Article  Google Scholar 

  189. Petty JA (1981) Fluid flow through the vessels and intervascular pits of sycamore wood. Holzforschung 35(5):213–216. https://doi.org/10.1515/hfsg.1981.35.5.213

    Article  Google Scholar 

  190. Petty JA, Preston RD (1969) The dimensions and number of pit membrane pores in conifer wood. Proc R Soc Lond B Biol Sci 172:137–151. https://doi.org/10.1098/rspb.1969.0016

    Article  Google Scholar 

  191. Phillips (1933) Movement of the pit membrane in coniferous woods, with special reference to preservative treatment. Forestry 7(2):109–120. https://doi.org/10.1093/oxfordjournals.forestry.a063340

    CAS  Article  Google Scholar 

  192. Poesio P, Ooms G, Barake S, Van der Bas F (2002) An investigation of the influence of acoustic waves on the liquid flow through a porous material. J Acoust Soc Am 111(5):2019–2025. https://doi.org/10.1121/1.1466872

    CAS  Article  PubMed  Google Scholar 

  193. Poonia PK, Tripathi S (2015) Effect of microwave treatment on permeability of Populus deltoides bartr. Wood Indian For 141(5):528–532. https://doi.org/10.36808/if/2015/v141i5/70232

    Article  Google Scholar 

  194. Poonia PK, Tripathi S, Sihag K, Kumar S (2015) Effect of microwave treatment on air permeability and preservative impregnation of Eucalyptus tereticornis wood. J Ind Acad Wood Sci 12(2):89–93. https://doi.org/10.1007/s13196-015-0148-0

    Article  Google Scholar 

  195. Poonia PK, Hom SK, Sihag K, Tripathi S (2016) Effect of microwave treatment on longitudinal air permeability and preservative uptake characteristics of Chir pine wood. Maderas-Cienc Tecnol 1:125–132. https://doi.org/10.4067/S0718-221X2016005000013

    Article  Google Scholar 

  196. Proctor PB, Wagg JW (1947) The identification of refractory Douglas-fir by means of growth characteristics. Proc Annu Meet Am Wood Preserv Assoc 43:170–176

    Google Scholar 

  197. Rahman KS, Islam MN, Musa SM et al (2011) Incising as an aid for the preservative treatment of wood—a review. Recent Patents Mater Sci 4(3):201–208. https://doi.org/10.2174/1874464811104030201

    Article  Google Scholar 

  198. Ramezanpour M, Tarmian A, Taghiyari HR (2015) Improving impregnation properties of Fir wood to acid copper chromate (ACC) with microwave pretreatment. Iforest 8(1):89–94. https://doi.org/10.3832/ifor1119-007

    Article  Google Scholar 

  199. Rao KS, Ravikumar G, Lai R, Gopalan J (2004) A new shock wave assisted wood preservative injection system. In: Proceedings of 24th international symposium on shock waves, Beijing, pp 1259–1264

  200. Rasouli D, Bahmani M, Humar M (2017) Impregnability of Paulownia and Populus wood with copper based preservatives. Drvna industrija 68(3):211–218. https://doi.org/10.5552/drind.2017.1701

    Article  Google Scholar 

  201. Rayirath P, Avramidis S (2008) Some aspects of western hemlock air permeability. Maderas-Cienc Tecnol 10(3):185–193. https://doi.org/10.4067/S0718-221X2008000300002

    Article  Google Scholar 

  202. Reinprecht L (2016) Wood deterioration, protection, and maintenance. Blackwell, London

    Google Scholar 

  203. Reinprecht L, Pánek M (2008) Bio-treatment of Spruce wood for improving of its permeability and soaking. Part 2: direct treatment with the fungus Trichoderma viride. Wood Res-Slovakia 53(3):1–8

    CAS  Google Scholar 

  204. Rhatigan RG, Morrell JJ (2003) Use of through-boring to improve CCA or ACZA treatment of refractory Douglas-fir and grand fir. For Prod J 53(6):33–35

    Google Scholar 

  205. Rhatigan RG, Milota MR, Morrell JJ, Lavery MR (2003) Effect of high temperature drying on permeability and treatment of Western hemlock lumber. For Prod J 53(9):55–58

    Google Scholar 

  206. Rhatigan RG, Freitag C, El-Kasmi S, Morrell JJ (2004) Preservative treatment of Scots pine and Norway spruce. For Prod J 54(10):91–94

    CAS  Google Scholar 

  207. Richter K, Sell J (1992) Studies on impregnation pathways in white fir (Abies alba). Holz Roh- Werkst 50:329–336

    CAS  Article  Google Scholar 

  208. Rosner B, Messner K, Tucker EJB, Bruce A (1998) Improved preservative penetration of Spruce after pre-treatment with selected fungi. I. Fungal pre-treatment of pole sections. In: Proceedings of 29nd annual meeting of the international research group on wood protection, IRG/WP 98-40117, Maastricht

  209. Ross AS, Clawson Jr RW (2014) New method for pretreatment of railroad crossties. In: Proceedings of 45nd annual meeting of the international research group on wood protection, IRG/WP 14-40675, St George, Utah

  210. Ruddick JNR (1980) Treatability of lodgepole pine lumber with ACA and CCA. For Prod J 30(2):28–32

    Google Scholar 

  211. Ruddick JNR (1986) A comparison of needle and North American incising techniques for improving preservative treatment of spruce and pine lumber. Holz Roh- Werkst 44(3):109–113. https://doi.org/10.1007/BF02606210

    Article  Google Scholar 

  212. Ruddick JNR, Yamamoto K, Wong PC, Mitchell KAR (1993) X-Ray photoelectron spectroscopic analysis of CCA-treated wood. Holzforschung 47(6):458–464. https://doi.org/10.1515/hfsg.1993.47.6.458

    CAS  Article  Google Scholar 

  213. Sakagami H, Tokunaga A, Fujimoto N et al (2016) Effects of drying temperature for Cryptomeria japonica on the permeability of wood preservative. I: the permeability of dried logs. Bioresour Technol 11(2):4781–4793. https://doi.org/10.15376/biores.11.2.4781-4793

    CAS  Article  Google Scholar 

  214. Samani A, Ganguly S, Kanyal R, Tripathi S (2019) Effect of microwave pre-treatment on preservative retention and treatability of Melia composita wood. J For Sci 65(10):391–396. https://doi.org/10.17221/39/2019-JFS

    CAS  Article  Google Scholar 

  215. Schneider PF, Morrell JJ, Levien KL (2005) Internal pressure development during supercritical fluid impregnation of wood. Wood Fiber Sci 37(3):413–423

    CAS  Google Scholar 

  216. Schubert M, Dengler V, Mourad S, Schwarze FWMR (2009) Determination of optimal growth parameters for the bioincising fungus Physisporinus vitreus by means of response surface methodology. J Appl Microbiol 106(5):1734–1742. https://doi.org/10.1111/j.1365-2672.2008.04138.x

    CAS  Article  PubMed  Google Scholar 

  217. Schubert M, Volkmer T, Lehringer C, Schwarze FWMR (2011) Resistance of bioincied wood treated with wood preservatives to blue-stain and wood-decay fungi. Int Biodeterior Biodegradation 65(1):108–115. https://doi.org/10.1016/j.ibiod.2010.10.003

    CAS  Article  Google Scholar 

  218. Schwarze FWMR, Landmesser H, Zgraggen B et al (2006) Permeability changes in heartwood of Picea abies and Abies alba induced by incubation with Physisporinus vitreus. Holzforschung 60(4):450–454. https://doi.org/10.1515/HF.2006.071

    CAS  Article  Google Scholar 

  219. Schwarze FWMR, Heeb M, Gilani M, Josset S (2019) Method for improving the acoustic properties of Spruce resonance wood. US Patent 20190088235A1

  220. Sedighi-Gilani M, Vontobel P, Lehmann E et al (2014) Liquid uptake in Scots pine sapwood and hardwood visualized and quantified by neutron radiography. Mater Struct 47(6):1083–1096. https://doi.org/10.1617/s11527-013-0112-7

    CAS  Article  Google Scholar 

  221. Sellin A (1994) Sapwood-heartwood proportion related to tree diameter, age and growth rate in Picea abies. Can J For Res 24(5):1022–1028. https://doi.org/10.1139/x94-133

    Article  Google Scholar 

  222. Shibui H, Miyauchi T, Shigeyama T, Ikeda M, Sugai Y (2019) Penetration pathway of oilborne preservative in heartwood of Japanese larch (Larix kaempferi). In: Proceedings of 50nd annual meeting of the international research group on wood protection, IRG/WP 19-40886, Quebec

  223. Shiny KS, Sundararaj R, Mamatha N, Lingappa B (2019) A new approach to wood protection: preliminary study of biologically synthesized copper oxide nanoparticle formulation as an environmental friendly wood protectant against decay fungi and termites. Maderas-Cienc Tecnol 21(3):347–356. https://doi.org/10.4067/S0718-221X2019005000307

    Article  Google Scholar 

  224. Shukla KS, Indra D (2000) Boucherie process: a review. Jour timber development association of India 46(3/4):33–40

    Google Scholar 

  225. Siau JF (1984) Transport processes in wood. Springer, Heidelberg

    Google Scholar 

  226. Siau JF, Smith WB, Meyer JA (1978) Wood-polymer composites form southern hardwoods. J Wood Sci 10:158–164

    CAS  Google Scholar 

  227. Skaar C (1988) Wood-water relations. Springer-Verlag, New York

    Google Scholar 

  228. Slahor JJ, Hassler CC, Degroot RC, Gardner DJ (1997) Preservative treatment evaluation with CCA and ACQ-B of four Appalachian wood species for use in timber transportation structures. For Prod J 47:33–42

    CAS  Google Scholar 

  229. Slahor JJ, Hassler CC, DeGroot RC, Gardner DJ (1998) Treatability of five Appalachian wood species with creosote and Timbor™. In: Proceedings of the ninety-fourth annual meeting of the American Wood-preservers Association, Arizona, pp 178–187

  230. Son DW, Lee JS, Kang MR, Park SB (2013) Effect of electron beam irradiation on the fire retardant penetration into wood. J Health Sci 2:201–205

    Google Scholar 

  231. Stamm AJ (1929) The capillary structure of softwoods. J Agric Res 38:23–67

    CAS  Google Scholar 

  232. Steppe K, Cnudde V, Girard C, Lemeur R, Cnudde JP, Jacobs P (2004) Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics. J Struct Biol 148(1):11–21

    PubMed  Article  Google Scholar 

  233. Stirling R, Drummond J, Zhang J, Ziobro RJ (2008) Micro-distribution of micronized Copper in Southern pine. In: Proceedings of 39nd annual meeting of the international research group on wood protection, IRG/WP 08-30479. Istanbul

  234. Sujatha M, Venmalar D (2019) Anatomical approach to evaluating the treatability class of five species of plantation timbers. J Ind Acad Wood Sci 16(1):15–21

    Article  Google Scholar 

  235. Sutherland JH, Johnston HW, Maass O (1934) Further investigation of the penetration of liquids into wood. Can J Res 10:36–72. https://doi.org/10.1139/cjr34-004

    CAS  Article  Google Scholar 

  236. Taghiyari HR (2013) Effects of heat-treatment on permeability of untreated and nanosilver-impregnated native hardwoods. Maderas-Cienc Tecnol 15(2):183–194. https://doi.org/10.4067/S0718-221X2013005000015

    CAS  Article  Google Scholar 

  237. Taghiyari HR, Avramidis S (2019) Specific gas permeability of normal and nanosilver-impregnated solid wood species as influenced by heat-treatment. Maderas-Cienc Tecnol 21(1):89–96. https://doi.org/10.4067/S0718-221X2019005000108

    CAS  Article  Google Scholar 

  238. Taghiyari HR, Malek BM (2014) Effect of heat treatment on longitudinal gas and liquid permeability of circular and square-shaped native hardwood specimens. Heat Mass Transf 50:1125–1136. https://doi.org/10.1007/s00231-014-1319-z

    CAS  Article  Google Scholar 

  239. Tanaka T, Avramidis S, Shida S (2010) A preliminary study on ultrasonic treatment effect on transverse wood permeability. Maderas-Cienc Tecnol 12(1):3–9. https://doi.org/10.4067/S0718-221X2010000100001

    Article  Google Scholar 

  240. Tarmian A, Mastouri A (2018) Water-repellent efficiency of thermally modified wood as affected by its permeability. J For Res 29(3):859–867. https://doi.org/10.1007/s11676-017-0495-3

    CAS  Article  Google Scholar 

  241. Tarmian A, Perré P (2009) Air permeability in longitdinal and radial directions of compression wood of Picea abies L. and tension wood of Fagus sylvatica L. Holzforschung 63(3):352–356. https://doi.org/10.1515/HF.2009.048

    CAS  Article  Google Scholar 

  242. Tarmian A, Remond R, Dashti H, Perré P (2012) Moisture diffusion coefficient of reaction woods: compression wood of Picea abies L. and tension wood of Fagus sylvatica L. Wood Sci Technol 46:405–417. https://doi.org/10.1007/s00226-011-0413-3

    CAS  Article  Google Scholar 

  243. Teesdale CH, MacLean JD (1918) Relative resistance of various hardwoods to injection with creosote. Bulletin of the U.S. Department of Agriculture No 606, Washington

  244. Teng TJ, Mat Arip MN, Sudesh K et al (2018) Conventional technology and nanotechnology in wood preservation: a review. BioRes 13(4):9220–9252. https://doi.org/10.15376/biores.13.4.Teng

    Article  Google Scholar 

  245. Terziev N (2002) Industrial kiln drying and its effect on microstructure, impregnation and properties of Scots pine timber impregnated for above ground use. Part 1. Effects of initial, final dryings and preservative on impregnation and timber quality. Holzforschung 56(4):428–433. https://doi.org/10.1515/HF.2002.066

    CAS  Article  Google Scholar 

  246. Thaler N, Lesar B, Karizm M, Humar M (2012) Bioincising of Norway spruce wood using wood inhabiting fungi. Int Biodeterior Biodegrad 68:51–55. https://doi.org/10.1016/j.ibiod.2011.11.014

    Article  Google Scholar 

  247. Thompson WS, Koch P (1981) Preservative treatment of hardwoods: a review. Rept. FO-35. USDA Forest Serv., Southern Forest Exot. Sta. New Orleans La

  248. Tiemann HD (1910) The physical structure of wood in relation to its penetrability by preservative fluids. Am Ry Eng Maint Way Assoc Bull 120:359–375

    Google Scholar 

  249. Torgovnikov G, Vinden P (2009) High-intensity microwave wood modification for increasing permeability. For Prod J 59(4):84–92

    Google Scholar 

  250. Tsunoda K (2001) Preservative properties of vapor-boron-treated wood and wood-based composites. J Wood Sci 47:149–153. https://doi.org/10.1007/BF00780565

    CAS  Article  Google Scholar 

  251. Unligil HH (1972) Penetrability and strength of white spruce after ponding. For Prod J 22(9):92–100

    CAS  Google Scholar 

  252. Usta I (2004) The effect of moisture content and wood density on the preservative uptake of Caucasian fie (Abies nordmanniana (Link.) Spash.) treated with CCA. Turk J Agric For 28:1–7

    Google Scholar 

  253. Usta I (2005) A review of the configuration of bordered pits to stimulate the fluid flow. Maderas-Cienc Tecnol 7(2):121–132. https://doi.org/10.4067/S0718-221X2005000200006

    Article  Google Scholar 

  254. Volkmer T, Landmesser H, Genoud A, Schwarze FWMR (2010) Penetration of 3-iodo-2-propynyl butylcarbamate (IPBC) in coniferous wood pre-treated with Physisporinus vitreus. J Coat Technol Res 7(6):721–726. https://doi.org/10.1007/s11998-010-9259-0

    CAS  Article  Google Scholar 

  255. Voulgaridis E, Passialis C, Karastergiou S, Adamopoulos S et al. (2014) Effect of laser drilling on impregnability of Fir (Abies borisii regis) and Spruce (Picea excelsa) wood. In: Proceedings of 7th international scientific and technical conference, “innovations in forest industry and engineering design”, Sofia-Yundola, pp 14–22

  256. Wang JZ, DeGroot R (1996) Treatability and durability of heartwood. In: Ritter MA, Duwadi SR, Lee PDH (eds) National conference on wood transportation structures. US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, pp 23–25

    Google Scholar 

  257. Wang W, Huang Y, Cao J (2018) Penetration and distribution of paraffin wax in wood of Loblolly pine and Scots pine studied by time domain NMR spectroscopy. Holzforschung 72(2):125–131. https://doi.org/10.1515/hf-2017-0030

    CAS  Article  Google Scholar 

  258. Watanabe U, Imamura Y, Iida I (1998) Liquid penetration of precompressed wood VI: anatomical characterization of pit fractures. J Wood Sci 44:158–162. https://doi.org/10.1007/BF00526263

    Article  Google Scholar 

  259. Weiss HF (1912) Structure of commercial woods in relation to the injection of preservatives. Proc Annu Meet Am Wood Preserv Assoc 8:159–187

    Google Scholar 

  260. Wen MY, Kang CW, Park HJ (2014) Impregnation and mechanical properties of three softwoods treated with a new fire retardant chemical. J Wood Sci 60:367–375. https://doi.org/10.1007/s10086-014-1408-0

    CAS  Article  Google Scholar 

  261. Winandy JE (1996) Effect of treatment, incising and drying on mechanical properties of timber. In: Ritter MA, Duwadi SR, Lee PDH (eds) National conference on wood transportation structures—new wood treatments. USDA Forest Service, Forest Products Laboratory, Madison, pp 371–378

  262. Winandy JE, Green F, Keefe D (2001) Treatability problems—relationships between anatomy, chemical composition and treatability. In: Proceedings of 32nd annual meeting of the international research group on wood protection, IRG/WP 01-40213, Nara

  263. Xu J, He S, Li J, Yu H, Zhao S, Chen Y, Ma L (2018) Effect of vacuum freeze-drying on enhancing liquid permeability of moso bamboo. BioRes 13(2):4159–4174. https://doi.org/10.15376/biores.13.2.4159-4174

    CAS  Article  Google Scholar 

  264. Xu H, Taghiyari HR, Clauson M, Milota MR, Morrell JJ (2019) Effect of supercritical carbon dioxide traeatmenton gas permeability of Paulownia fortunei heartwood and sapwood. Wood Fiber Sci 51(1):1–15

    Article  Google Scholar 

  265. Xue W, Kennepohl P, Ruddick J (2015) Reacted copper (II) concentrations in earlywood and latewood of micronized copper-treated Canadian softwood species. Holzforschung 69(4):509–512. https://doi.org/10.1515/hf-2014-0128

    CAS  Article  Google Scholar 

  266. Yamauchi S, Doi S (2003) Raman spectroscopic study on the behavior of boric acid in wood. J Wood Sci 49(3):227–234. https://doi.org/10.1007/s10086-002-0466-x

    CAS  Article  Google Scholar 

  267. Yamauchi S, Sakai Y, Watanabe Y et al (2007) Distribution of boron in wood treated with aqueous and methanolic boric acid solutions. J Wood Sci 53(4):324–331. https://doi.org/10.1007/s10086-006-0863-7

    CAS  Article  Google Scholar 

  268. Yildiz S (2007) Retention and penetration evaluation of some softwood species treated with copper azole. Build Environ 42:2305–2310. https://doi.org/10.1016/j.buildenv.2006.11.015

    Article  Google Scholar 

  269. Yildiz S, Canakci S, Yildiz UC et al (2012) Improving of the impregnability of refractory Spruce wood by Bacillus licheniformis pretreatment. BioRes 7(1):565–577

    CAS  Google Scholar 

  270. Yin J, Song K, Lu Y, Zhao G, Yin Y (2015) Comparison of changes in micropores and mesopores in the wood cell walls of sapwood and heartwood. Wood Sci Technol 49(5):987–1001. https://doi.org/10.1007/s00226-015-0741-9

    CAS  Article  Google Scholar 

  271. Yorur H, Kayahan K (2018) Improving impregnation and penetration properties of refractory woods through cryogenic treatment. BioRes 13(1):1829–1842. https://doi.org/10.15376/biores.13.1.1829-1842

    CAS  Article  Google Scholar 

  272. Yuxian A (2000) Influence of drying processes on the treatability and CCA distribution in the heartwood of five Canadian softwood. Dissertation, University of British Columbia

  273. Zauer M, Hempel S, Pfriem A, Mechtcherine V, Wagenführ A (2014) Investigations of the pore-size distribution of wood in the dry and wet state by means of mercury intrusion porosimetry. Wood Sci Technol 48(6):1229–1240. https://doi.org/10.1007/s00226-014-0671-y

    CAS  Article  Google Scholar 

  274. Zelinka SL, Kirker GT, Jakes JE, Passarini L (2017) Distribution and oxidation state of Copper in the cell walls of treated wood examined by synchrotron based XANES and XFM. In: Proceedings of CORROSION. American Wood Protection Association, pp 172–178

  275. Zhang Y, Cai L (2008) Impact of heating speed on permeability of sub-alpine fir. Wood Sci Technol 42:241–250. https://doi.org/10.1007/s00226-007-0172-3

    CAS  Article  Google Scholar 

  276. Zhang CH, Yang DQ, Fujita M, Wan H, Abe H, Fujiwara T (2006) Microscopic observation of resin penetration in aspen. In: Lagaňa R, Kurjatko S, Kúdela J (eds) Wood structure and properties. Arbora Publishers, Zvolne, pp 181–184

    Google Scholar 

  277. Zimmer K, Kerfriden B (2016) Influence of pressure phase impregnation time on the uptake and distribution of wood preservatives in Scots pine material of diverse treatability. In: Proceedings of 47nd annual meeting of the international research group on wood protection, IRG/WP 16-40752, Lisbon

  278. Zimmer K, Larnøy E, Høibø OA (2010) Variation of Scots pine permeability in Northern Europe. In: Meier P (ed) Proceedings of the 6th meeting of the nordic-baltic network in wood material science and engineering (WSE), Tallinn, pp 78–85

  279. Zimmer K, Treu A, McCulloh KA (2014) Anatomical differences in the structural elements of fluid passage of Scots pine sapwood with contrasting treatability. Wood Sci Technol 48:435–447. https://doi.org/10.1007/s00226-014-0619-2

    CAS  Article  Google Scholar 

  280. Žlahtič M, Mikac U, Serša I et al (2017) Distribution and penetration of Tung oil in wood studied by magnetic resonance microscopy. Ind Crop Prod 96:149–157. https://doi.org/10.1016/j.indcrop.2016.11.049

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank five anonymous reviewers for their valuable comments which were very useful in improving the quality of this review paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Asghar Tarmian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tarmian, A., Zahedi Tajrishi, I., Oladi, R. et al. Treatability of wood for pressure treatment processes: a literature review. Eur. J. Wood Prod. (2020). https://doi.org/10.1007/s00107-020-01541-w

Download citation