Skip to main content
Log in

The influence of wood polymer composite (WPC) specimen composition and dimensions on wave propagation

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Wave propagation velocity has been used to characterize and classify different types of materials. Proper use of this parameter means, it is necessary to know which variables affect it. This study therefore aims to evaluate the influence of composite type and specimen dimensions on the velocity of ultrasonic and stress wave propagation in compression and injection molded specimens produced with 12 different wood-polymer-composite (WPC) formulations and with high-density polyethylene (HDPE), low-density polyethylene (LDPE) and polypropylene (PP) thermoplastics. For wave propagation velocity analysis, the compression-molded specimens were cut into pieces of four different lengths with a nominal thickness of 10 mm, while the injected ones were produced in two lengths and 4 mm nominal thickness. 22 and 45 kHz transducers were used for the ultrasound wave propagation tests. Specimen size affect wave propagation velocity, showing that in the WPC classification the relationships between cross section dimensions (width and thickness) and length and cross section dimensions are important, as are the relationships between these dimensions and wavelength. The type of WPC polymer affected wave propagation velocity, showing that it is feasible to use this parameter in the classification of different polymers. Composition also affected velocity when a single polymer was used, but the influence of the dimensions hinders more conclusive results regarding wave propagation velocity sensitivity in the differentiation of different compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AENOR (2014) UNE-CENT/TS: 15534-1; Compuestos de Madera-plástico (WPC) Parte 1: Métodos de ensayo para la caracterización de los materiales y productos de WPC. (Wood-polymer composites (WPC)—Part 1: Test methods for characterization of compounds and products) AENOR, Madrid

  • Al-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354

    Article  CAS  Google Scholar 

  • ASTM (2009) D1525-09; standard test method for vicat softening temperature of plastics, ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2010) D1505-10; standard test method for density of plastics by the density-gradient technique, ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2013) D1238-13, standard test method for melt flow rates of thermoplastics by extrusion plastometer, ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2014) D638-14, standard test method for tensile properties of plastics, ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2015) D790-15e2, standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken

    Google Scholar 

  • Bartholomeu A, Gonçalves R, Bucur V (2003) Dispersion of ultrasonic waves in Eucalyptus lumber as a function of the geometry of boards. Sci For 63:235–240

    Google Scholar 

  • Bekhta PA, Niemz P, Kucera L (2000) The study of sound propagation in the wood-based composite materials. In: 12th international symposium on nondestructive of wood, Sopron, p. 33–41

  • Bobadilla I, Robles M, Martínez RD, Íñiguez-González G, Arriaga F (2011) In situ acoustic methods to estimate the physical and mechanical aging of Oriented Strand Board. In: 17 international nondestructive testing and evaluation of wood symposium. Sopron, Hungary

  • Bobadilla I, Íñiguez-González G, Esteban M, Arriaga F (2012) Vibration method for the prediction of aging effect on properties of particleboard and fiberboard. For Prod J 62(1):69–74

    Google Scholar 

  • BRASKEM (2016) Polyolefins- products and properties. http://www.braskem.com/catalogo2016mai16/. Accessed in June 2016

  • Bucur V (2006) Acoustics of wood, 2nd edn. Springer series in wood science. Springer, Berlin

    Google Scholar 

  • Dackermann U, Crews K, Kasal B, Li J, Riggio M, Rinn F, Tannert T (2014) In situ assessment of structural timber using stress-wave measurements. Mater Struct 47(5):787–803. https://doi.org/10.1617/s11527-013-0095-4

    Article  Google Scholar 

  • El-Haggar SM, Kamel MA (2011) Chap. 13: wood plastic composites. Dr. Pavla Tesinova (Ed.) Advances in composite materials–analysis of natural and man-made materials. In Tech Europe, Croatia, pp 325–344

    Google Scholar 

  • Finocchio H, Laurini RV, Rodolfo JrA, Goncalves R, Hage JrE (2010) Gelation process analysis by ultrasound method of a rigid PVC compound. In: Polymer Processing Society 26th Annual Meeting—PPS-26, Akron, USA: 26, p 1–6

  • Garbacz A, Garboczi EJ (2003) Ultrasonic evaluation methods applicable to polymer concrete composites. NISTIR 6975. National Institute of Standards and Technology, Gaithersburg 68

    Google Scholar 

  • Garcez MR, Santos T, Gatto DA (2013) Avaliação das propriedades físicas e mecânicas de concretos pré-moldados com adição de serragem em substituição ao agregado miúdo. (Evaluation of physical and mechanical properties of precast concretes produced with sawdust in replacement of sand). Ciênc Eng 22(2):95–104

    Article  Google Scholar 

  • Gardner DJ, Han Y, Wang L (2015) Wood–Plastic Composite Technology. Curr For Rep 1(3):139–150

    Google Scholar 

  • Gonçalves R, Silva SAM (2002) Avaliação de chapas de fibra de madeira utilizando ultra-som. (Wood fiberboard evaluation using ultrasound). II Congresso Ibero-Americano de Pesquisa e Desenvolvimento de Produtos Florestais, Curitiba

  • Gonçalves R, Silva SAM (2003) Correlações entre módulo de elasticidade e constante dinâmica em chapas MDF. (Correlations between elasticity module and constant dynamics in MDF panels). III Pan-American Conference for nondestructive testing—Pan NDT Proceedings 1, Rio de Janeiro, p 1–10

  • Hilbers U, Thoemen H, Hasener J, Fruehwald A (2012a) Effects of panel density and particle type on the ultrasonic transmission through wood-based panels. Wood Sci Technol 46(4):685–698. https://doi.org/10.1007/s00226-011-0436-9

    Article  CAS  Google Scholar 

  • Hilbers U, Neuenschwander J, Hasener J, Sanabria SJ, Niemz P, Thoemen H (2012b) Observation of interference effects in air-coupled ultrasonic inspection of wood-based panels. Wood Sci Technol 46(5):979–990. https://doi.org/10.1007/s00226-011-0460-9

    Article  CAS  Google Scholar 

  • Matuana LM, Stark NM (2015) In: The use of wood fibers as reinforcements in composites. Faruk O, Sain M (eds) Biofiber reinforcements in composite materials. Elsevier, pp 648–688. https://doi.org/10.1533/9781782421276.5.648

  • Mazeika L, Sliteris R, Vladisauskas A (2010) Measurement of velocity and attenuation for ultrasonic longitudinal waves in the polyethylene samples. Ultragarsas (Ultrasound) 65(4):12–15

    Google Scholar 

  • Mendes RF, Mendes LM, Carvalho AG, Guimarães JB Jr, Mesquita RGA (2012) Determinação do Módulo de Elasticidade de Painéis Aglomerados por Stress Wave Timer (Determination of the Elastic Modulus of Particleboard by Stress Wave Timer). Floresta e Ambiente 19(2):117–122. https://doi.org/10.4322/floram.2012.013

    Article  Google Scholar 

  • Morales EAM, Rocco FA, Nascimento MF, Gonçalves R (2007) Evaluación de Propiedades Físicas y Mecánicas de Tableros OSB Utilizando Técnica de Ensayo no Destructiva. (Evaluating OSB Properties Using Nondestructive Technique). Inf Tecnol 18(3):89–94

    Article  Google Scholar 

  • Najafi SK, Ebrahimi G, Behjati S (2008) Nondestructive evaluation of wood plastic composites using ultrasonic technique. Česká Společnost pro nedestruktivní zkoušení materiálu. 38° Mezinárodní Konference—DEFEKTOSKOPIE, Brno

  • Oliveira FGR, Miller KP, Candian M, Sales A (2006) Efeito do comprimento do corpo-de-prova na velocidade ultra-sônica em madeiras. (Effect of the size of the specimen on ultrasonic velocity). R Árvore 30(1):141–145

    Article  Google Scholar 

  • Ross RJ (ed) (2015) Nondestructive evaluation of wood. 2nd edn. General Technical Report FPL-GTR-238. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, 169 p

  • Silva SAM, Gonçalves R (2007) Avaliação da distribuição da densidade em MDF a partir da técnica da onda de ultrasom. (Evaluation of the density distribution in MDF’ using ultrasonic wave technique). Sci For (IPEF) 74:19–26

    Google Scholar 

  • Silva SAM, Morales EAM, Gonçalves R (2008) Utilização de técnicas de ondas ultrasônicas para estimativa de propriedades mecânicas de chapas MDF e OSB. (Use of ultrasonic wave techniques to estimate the MDF and OSB panels mechanical properties). Francisco Antonio Rocco Lahr. (Org.). Produtos Derivados da Madeira. 1ed, São Carlos, Universidade de São Paulo (1): pp 137–158

  • Smith RA (2009) Composite defects and their detection. Mater Sci Eng 3:103–143

    Google Scholar 

  • Sogbey BJAY., Kwofie S, Darko EO, Adiaottor AA, Llotey N, Dagadu CPK (2014) Comparative structural strength analysis of Pozzolana-Portland Cement using ultrasonic non-destructive testing technique. e-J Sci Technol 5(9):125–136

    Google Scholar 

  • Sun YG, Arima T (1999) Structural mechanics of wood composite materials 11: ultrasonic propagation mechanism and internal bonding of particleboard. J Wood Sci 45(3):221–226

    Article  Google Scholar 

  • Trinca AJ, Gonçalves R (2009) Efeito das dimensões da seção transversal e da freqüência do transdutor na velocidade de propagação de ondas de ultra-som na madeira. (Effect of the transversal section dimensions and transducer frequency on ultrasound wave propagation velocity in wood). Revista Árvore 33(1):177–184

    Article  Google Scholar 

  • Tucker BJ, Bender DA, Pollock DG (1998) Nondestructive evaluation of wood-plastic composites. In: 10th symposium nondestructive testing of wood. Lausanne, Switzerland: 33–41

Download references

Acknowledgements

The authors would like to thank the CNPq, National Council of Scientific and Technological Development—Brazil; the UNICENTRO, Midwestern State University; UPM, Madrid Polytechnic University; UCS, Caxias do Sul University; and Ministerio de Economía y Competitividad. Plan Nacional I + D 2013–2016. Proy.: BIA 2014-55089-P for the support received to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éverton Hillig.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillig, É., Bobadilla, I., Gonçalves, R. et al. The influence of wood polymer composite (WPC) specimen composition and dimensions on wave propagation. Eur. J. Wood Prod. 76, 1153–1164 (2018). https://doi.org/10.1007/s00107-018-1309-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-018-1309-9

Navigation