Skip to main content
Log in

Modification of beech veneers with lignin phenol formaldehyde resins in the production of laminated veneer lumber (LVL)

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Rotary cut beech (Fagus sylvatica L.) veneers were treated with four different lignin phenol formaldehyde (LPF) solutions using dimethyl sulfoxide (DMSO) as a solvent. Four of these veneers were bonded with PF adhesive to produce four-layer laminated veneer lumber (LVL). To synthesize the LPF solutions, a commercial phenol formaldehyde resin (PF resin) was individually mixed with three different technical lignins (Indulin AT, BioChoice lignin, organosolv lignin) and lignin cleavage products (LCP) at a ratio of 3:2 (60%:40%). Differential scanning calorimetry showed an increased curing temperature for the LPF resins in comparison to the PF resin. The mechanical and water-related properties of the LPF-modified LVL were shown to be similar or slightly improved compared to PF-modified LVL. Fungal degradation experiments with white-rot fungus (Trametes versicolor) and brown-rot fungus (Coniophora puteana) exhibited no significant differences in the mass loss of the LPF-modified and PF-modified samples except in one case: LVL made from veneers treated with Indulin AT exposed to the white-rot fungus. The resistance to weathering of LVL samples made from veneers treated with technical lignins was low; however, specimens treated with LCP and the reference PF resin displayed a higher resistance to weathering. It is concluded that technical lignins or LCP can, to a certain extent, be used as a substitute for crude-oil based PF resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso MV, Oliet M, Perz JM (2004) Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods. Thermochem Acta 419(1–2):161–167

    Article  CAS  Google Scholar 

  • Alonso MV, Oliet M, Rodríguez F, García J, Gilarranz MA, Rodríguez JJ (2005) Modification of ammonium lignosulfonate by phenolation for use in phenolic resins. Bioresour Technol 96(9):1013–1018

    Article  CAS  PubMed  Google Scholar 

  • Christiansen AW, Gollob L (1985) Differential scanning calorimetry of phenol-formaldehyde resols. J Appl Polym Sci 30:2279–2289

    Article  CAS  Google Scholar 

  • Danielson B, Simonson R (1998) Kraft lignin in PF resin. Part 1. Partial replacement of phenol by kraft lignin in PF adhesives for plywood. J Adhes Sci Technol 12:923–939

    Article  CAS  Google Scholar 

  • Dieste A, Krause A, Bollmus S, Militz H (2009) Gluing ability of plywood produced with DMDHEU-modified veneers of Fagus sp., Betula sp. and Picea sp.. Int J Adhes Adhes 29(2):206–209

    Article  CAS  Google Scholar 

  • DIN CEN/TS 15083–1 (2005) Durability of wood and wood-based products—determination of the natural durability of solid wood against wood-destroying fungi, test methods—Part 1: basidiomycetes; German version CEN/TS 15083-1:2005. Deutsches Institut für Normung

  • El Mansouri N-E, Salvadó J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crops Prod 24(1):8–16

    Article  Google Scholar 

  • EN 310 (1993) Wood-based panels. Determination of modulus of elasticity in bending and of bending strength. European Committee of Standardisation (CEN), Brussels

    Google Scholar 

  • EN 84 (1997) Wood preservatives. Accelerated ageing of treated wood prior to biological testing. Leaching procedure. European Committee of Standardisation (CEN), Brussels

    Google Scholar 

  • EN 927–6 (2008) Paints and varnishes—coating materials and coating systems for exterior wood—Part 6: exposure of wood coatings to artificial weathering using fluorescent UV lamps and water. European Committee of Standardisation (CEN), Brussels

    Google Scholar 

  • Evans PD, Kraushaar Gibson S, Cullis I, Liu C, Sèbe G (2013) Photostabilization of wood using low molecular weight phenol formaldehyde resin and hindered amine light stabilizer. Polym Degrad Stabil 98:158–168

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Furuno T, Imamura Y, Kajita H (2004) The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Sci Technol 37:349–361

    Article  CAS  Google Scholar 

  • Gosselink RJA, deJoug E, Guran B, Abächerlie A (2004) Co-ordination network for lignin-standardization, production and application adapted to market requirements (EUROLIGNIN). Ind Crops Prod 20(2):121–129

    Article  CAS  Google Scholar 

  • Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, Weinheim

    Book  Google Scholar 

  • Hon DN-S, Chang S-T (1984) Surface degradation of wood by ultraviolet light. J Polym Sci 22:2227–2241

    CAS  Google Scholar 

  • Hu Z, Du X, Liu J, Chang H, Jameel H (2016) Structural characterization of pine Kraft lignin: biochoice lignin vs indulin AT. J Wood Chem Technol 36:432–446

    Article  CAS  Google Scholar 

  • Hultzsch K (1950) Chemie der Phenolharze (Chemistry of phenolic resins) (in German), vol 3. Springer, Berlin

    Google Scholar 

  • Kartal NS, Ayrilmis N, Imamura Y (2007) Decay and termite resistance of plywood treated with various fire retardants. Build Environ 42:1207–1211

    Article  Google Scholar 

  • Khan MA, Ashraf SM, Malhotra VP (2004) Eucalyptus bark lignin substituted phenol formaldehyde adhesives: a study on optimization of reaction parameters and characterization. J Appl Polym Sci 92:3514–3523

    Article  CAS  Google Scholar 

  • Kielmann BC, Mai C (2016) Application and artificial weathering performance of translucent coatings on resin-treated and dye-stained beech-wood. Prog Org Coat 95:54–63

    Article  CAS  Google Scholar 

  • Klašnja B, Kopitović S (1992) Lignin-phenol-formaldehyde resins as adhesives in the production of plywood. Holz Roh Werkst 50:282–285

    Article  Google Scholar 

  • Kleinert M, Barth T (2008) Phenols from lignin. Chem Eng Technol 31(5):736–745

    Article  CAS  Google Scholar 

  • Laks PE, Richter DL, Larkin GM (2002) Fungal susceptibility of interior commercial building panels. Forest Prod J 52(5):41–44

    Google Scholar 

  • Lora JH, Glasser WG (2002) Recent application of lignin: a suitable alternative to nonrenewable materials. J Polym Environ 10:1:39–48

    Article  Google Scholar 

  • Madsen B (1975) Moisture content–strength relationship for lumber subjected to bending. Can J Civil Eng 2(4):466–473

    Article  Google Scholar 

  • Mittal M, Sharma CB (1992) Studies on lignin-based adhesives for plywood panels. Polym Int 29:7–8

    Article  CAS  Google Scholar 

  • Panday MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41

    Article  Google Scholar 

  • Pilato LA (2010) Phenolic resins: a century of progress. Springer, Berlin

    Book  Google Scholar 

  • Pizzi A (1994) Advanced wood adhesives technology. Marcel Dekker, New York

    Google Scholar 

  • Pradhan SK, Chakraborty I, Kar BB (2015) Chemically modified lignin—a potential resource material for composites with better stability. Int J Sci Environ Technol 4(1):183–189

    Google Scholar 

  • Puls J (2009) Lignin—Verfügbarkeit, Markt und Verwendung: Perspektiven für schwefelfreie Lignine (Lignin—Availability, market and application: perspectives for sulfur-free lignins). In: Gülzower Fachgespräche, vol 31—Stoffliche Nutzung von Lignin. Fachagentur Nachwachsende Rohstoffe, Gülzow (In German)

    Google Scholar 

  • Rowell RM, Banks WB (1985) Water repellency and dimensional stability of wood. USDA. For Serv F.P.L., Gen Techn Rep. FPL-50

  • Ryu JY, Imamura Y, Takahashi M, Kajita H (1993) Effects of molecular weight and some other properties of resins on the biological resistance of phenolic resin treated wood. Mokuzai Gakkaishi 39(4):486–492

    CAS  Google Scholar 

  • Schultz TP, Hubbard TF Jr, Jin L, Fisher TH, Nicholas DD (1990) Role of stilbenes in the natural durability of wood: fungicidal structure–activity relationships. Phytochemistry 29(5):1501–1507

    Article  CAS  Google Scholar 

  • Stamm AJ, Seborg RM (1936) Resin treated plywood. Ind Eng Chem 31:897–902

    Article  Google Scholar 

  • Suparno O, Anthony D, Covington AD, Christine S, Evans CS (2005) Kraft lignin degradation products for tanning and dyeing of leather. J Chem Technol Biotechnol 80:44–49

    Article  CAS  Google Scholar 

  • Tejado A, Peña C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 98:1655–1663

    Article  CAS  PubMed  Google Scholar 

  • Trinh HM, Militz H, Mai C (2012) Modification of beech veneers with N-methylol-melamine compounds for the production of plywood. Eur J Wood Prod 70:421–432

    Article  CAS  Google Scholar 

  • Vick CB, Rowell RM (1990) Adhesive bonding of acetylated wood. Int J Adhes Adhes 10:4:263–272

    Article  CAS  Google Scholar 

  • Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6(3):3547–3568

    Google Scholar 

  • Wang M, Leitch M, Xu C (2009) Synthesis of phenol-formaldehyde resol resins using organosolv pine lignins. Eur Polym J 45:3380–3388

    Article  CAS  Google Scholar 

  • Wang H, Tucker M, Ji Y (2013) Recent development in chemical depolymerization of lignin: a review. J Appl Chem 2013:838645. https://doi.org/10.1155/2013/838645

    Article  Google Scholar 

  • Yang S, Zhang Y, Yuan T-Q, Su R-C (2015) Lignin-phenol-formaldehyde resin adhesives prepared with biorefinery technical lignins. J Appl Sci 132:42493. https://doi.org/10.1002/app.42493

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the “Niedersächsisches Ministerium für Wissenschaft und Kultur” for financial support, Fraunhofer CBP and Stora Enso for lignin delivery and Bionic Laboratories BLG GmbH for providing the lignin degradation products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Militz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleckenstein, M., Biziks, V., Mai, C. et al. Modification of beech veneers with lignin phenol formaldehyde resins in the production of laminated veneer lumber (LVL). Eur. J. Wood Prod. 76, 843–851 (2018). https://doi.org/10.1007/s00107-017-1275-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-017-1275-7

Navigation