Advertisement

European Journal of Wood and Wood Products

, Volume 76, Issue 3, pp 1045–1059 | Cite as

Environmental aspects of material efficiency versus carbon storage in timber buildings

  • Annette Hafner
  • Sabrina Schäfer
Original

Abstract

This article highlights the interdependencies of carbon storage and material efficiency in timber buildings. These elements appear contradictory in regard to environmental factors. Following a general literature review of environmental aspects of timber buildings and their components, building elements are analyzed in regard to their relevance for both issues. Particular advantages for material efficiency and carbon storage in regard to specific building elements are discussed. The first section summarizes what currently qualifies as the state of art in environmental standards of timber buildings on building level, looking at influence on the sector and on the competition on wooden material for material or energetic use. Calculations on carbon storage of exemplary timber buildings are shown in the following section. A factor for material efficiency of wooden use is hereby introduced. The interdependencies of carbon storage and material efficiency are discussed on the level of building elements and according to necessary requirements. Results show that there is no “best” timber construction that fulfills all requirements, as each building and with that each specific construction needs to fulfill varying circumstances. It is thus demonstrated that it is not enough to only focus on one of the issues. It is important to keep these interconnections in mind for climate discussions in regard to timber buildings and to further optimize timber constructions and buildings to meet both targets.

Notes

Acknowledgements

The named research project “Greenhouse gas balances for timber buildings—Implementation of new requirements for life-cycle-assessments and calculation of empiric substitution factors (GHG—timber buildings)” was funded by the Waldklimafonds, a joined research grant of the Federal Ministry of Food and Agriculture and the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety. The authors gratefully acknowledge the assistance of all concerned.

References

  1. Achenbach H, Rüter S (2015) Life cycle assessment of pre-fabricated timber houses according to the European state-of-the-art standards. In: Kutnar A (ed) COST Action FP1407 Understanding wood modification through an integrated scientific and environmental impact approach. COST Action FP1407 International Conference, Slovenia 2015Google Scholar
  2. Ascona (2016) Ascona GbR LEGEP Bausoftware Version 2.7.638 plus Version Update 11–2015 and 2-2016, Stand Datenbank Nov. 2015, München 2016Google Scholar
  3. BBR (2016) Federal Office for Building and Regional Planning, Referat II 6 Bauen und Umwelt Runder Tisch Ressourceneffizienz im Bauwesen. [Round table for resource efficiency in the building sector]. The author is member of this round tableGoogle Scholar
  4. BBSR (2015) Federal Institute for Research on Building, Urban Affairs and Spatial Development: Oekobau.dat database. http://www.oekobaudat.de (Version 2015)
  5. BMEL (2016) Klimaschutz in der Land- und Forstwirtschaft sowie den nachgelagerten Bereichen Ernährung und Holzverwendung—Gutachten der wissenschaftlichen Beiräte für Agrarpolitik, Ernährung und Holzverwendung gesundheitlichen Verbraucherschutz und für Waldpolitik beim BMEL. [Climate change mitigation in agriculture and forestry and in the downstream sectors of food and timber use—Expertise of the Scientific Advisory Board on Agricultural Policy, Food and Consumer Health Protection and Scientific Advisory Board on Forest Policy]Google Scholar
  6. BMUB (2011) Federal Institute for Research on Building, Urban Affairs and Spatial Development (BMUB) 2011: Nutzungsdauern von Bauteilen zur Lebenszyklusanalyse nach BNB. [Expected service life of building products for life cycle assessment in German BNB system]Google Scholar
  7. BMUB (2012) Federal Institute for Research on Building, Urban Affairs and Spatial Development: Der Leitfaden Nachhaltiges Bauen und das Bewertungssystem Nachhaltiges Bauen (BNB) [Sustainable building information and assessment system for sustainable building]Google Scholar
  8. Buyle M, Braet J, Audenaert A (2013) Life cycle assessment in the construction sector: a review. Renew Sustain Energy Rev 26:379–388CrossRefGoogle Scholar
  9. Cabeza L, Rincón L, Vilarino V, Pérez G, Castell A (2014) Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: a review. Renew Sustain Energy Rev 29:394–415CrossRefGoogle Scholar
  10. COP21 (2016) COP21–2015 Paris climate conference. http://www.cop21paris.org/about/cop21. Accessed 17 Mar 2016
  11. Dieter M, Seintsch B (2012) Changes in the competitiveness of the German wood and paper industries due to increasing shortage of coniferous roundwood. Allgemeine Forst Jagdzeitung 183(5–6):116–128Google Scholar
  12. Dodoo A, Gustavsson L, Sathre R (2012) Lifecycle primary energy analysis of conventional and passive houses. Build Technol Urban Dev 3(2):105–111Google Scholar
  13. Dodoo A, Gustavsson L, Sathre R (2014) Lifecycle carbon implications of conventional and low-energy multi-story timber building systems. Energy Build 82:194–210CrossRefGoogle Scholar
  14. EN 15804 (2014) Sustainability of construction works—environmental product declarations—core rules for the product category of construction productsGoogle Scholar
  15. EN 15978 (2012) Sustainability of construction works—assessment of environmental performance of buildings—Calculation method. European Committee for StandardizationGoogle Scholar
  16. EN 16485 (2014) Round and sawn timber—environmental product declarations—product category rules for wood and wood-based products for use in constructionGoogle Scholar
  17. EnEV (2009) http://www.enev-online.org/enev_2009_volltext/. Accessed 10 Apr 17
  18. European Commission (EC) (2007) 2020 vision: saving our energyGoogle Scholar
  19. European Commission (EC) (2011) Roadmap to a Resource Efficient Europe. Communication from the commission to the European parliament, the council, the European economic and social committee of the regionsGoogle Scholar
  20. European Commission (EC) (2016) Resource efficiency—environment—European CommissionGoogle Scholar
  21. Fadai A, Winter W (2015) Resource-efficient wood lightweight concrete composites in building constructions. Struct Eng Int 27(2):197–204(8), International Association for Bridge and Structural Engineering.  https://doi.org/10.2749/101686617X14881932435772 CrossRefGoogle Scholar
  22. Fadai A, Winter W, Stefanoudakis D, Hollinsky K (2013) Development of wood-based multi-layer systems in existing building stock. Adv Mater Res 778:722–730CrossRefGoogle Scholar
  23. Fava JA (2006) Will the next 10 years be as productive in advancing life cycle approaches as the last 15years? Int J Life Cycle Assess 11(1):6–8CrossRefGoogle Scholar
  24. Gräfe M, Merk M, Werther N et al. (2015) Erarbeitung weiterführender Konstruktionsregeln/-details für mehrgeschossige Gebäude in Holzbauweise der Gebäudeklasse 4 [Creation of a catalogue with thoroughly designed details and structures for timber structures in building class 4]. Frauenhofer IRBGoogle Scholar
  25. Graubner CA, Hock C, Schneider C (2006) Ökobilanzstudie—Gegenüberstellung Massivhaus/Holzelementbauweise [LCA Study—Comparison massive building and timber frame building]. Forschungsbericht TU Darmstadt, Institut für MassivbauGoogle Scholar
  26. Hafner A (2014) Contribution of timber buildings on sustainability issues. Proceedings of world sustainable building conference 2014, ISBN:978-84-697-1815-5 BarcelonaGoogle Scholar
  27. Hafner A (2017) How building with wood can be linked to sales of building plots: results from an exemplary site development in Munich, Germany. Sustainability 9(6):947CrossRefGoogle Scholar
  28. Hafner A, Ott S, Winter S (2013) Recycling and end-of-life scenarios for timber structures. In: Aicher S, Reinhardt H-W, Garrecht H (eds) Materials and joints in timber structures. Springer, London, pp 89–98.  https://doi.org/10.1007/978-94-007-7811-5$4 Google Scholar
  29. Hafner A, Schäfer S et al (2017) Methodenentwicklung zur Beschreibung von Zielwerten zum Primärenergieaufwand und CO2-Aquivalent von Baukonstruktionen zur Verknüpfung mit Grundstücksvergaben und Qualitätssicherung bis zur Entwurfsplanung [Development Method to Specify Target Values for CO2-equivalent and Primary Energy Input]. DBU project (AZ: 31943)Google Scholar
  30. Heeren N, Mutel CL, Steubing B, Ostermeyer Y, Wallbaum H, Hellweg S (2015) Environmental impact of buildings—what matters? Environ Sci Technol 49(16):9832–9841CrossRefPubMedGoogle Scholar
  31. Heikkinen P, Kaufmann H, Winter S, Larsen K (eds) (2010) TES EnergyFaçade—prefabricated timber based building system for improving the energy efficiency of the building envelope. Final project report 2010Google Scholar
  32. Heuer E, Baldauf T, Schmitz F, Rüter S (2016) Was tragen Wald und Holz zum Klimaschutz in Deutschland bei? [What do forest and wood contribute to climate protection in Germany?]. AFZ—Der Wald 115/2016Google Scholar
  33. Höglmeier K, Weber-Blaschke G, Richter K (2013) Potentials for cascading of recovered wood from building deconstruction—a case study for south-east Germany. Resour Conserv Recycl 78:81–91CrossRefGoogle Scholar
  34. Höglmeier K, Weber-Blaschke G, Richter K (2014) Utilization of recovered wood in cascades versus utilization of primary wood-a comparison with life cycle assessment using system expansion. Int J Life Cycle Assess 19(10):1755–1766CrossRefGoogle Scholar
  35. Höglmeier K, Steubing B, Weber-Blaschke G, Richter K (2015) LCA-based optimization of wood utilization under special consideration of cascading use of wood. Environ Manage 152:158–170Google Scholar
  36. Kain G, Barbu M-C, Richter K, Plank B, Tondi G, Petutschnigg A (2015) Use of tree bark as insulation material. In: Conference paper Forest Products SocietyGoogle Scholar
  37. Kaufmann H, König H (2011) Bauen mit Holz: Wege in die Zukunft, [Building with wood: ways to the future,] DBU project. AZ, p 29239Google Scholar
  38. Knauf M (2015) Applying opportunity costs to correctly interpret resource efficiency in LCA studies and environmental product declarations. Eur J Wood Prod 73:251–257CrossRefGoogle Scholar
  39. König H (2016) Carbon storage and CO2 substitution in new buildings. In: Conference Proceedings Sustainable Built Environment Conference 2016 in Hamburg.  https://doi.org/10.5445/IR/1000051699. ISBN:978–3-00-052213-0, pp200-2009
  40. Kuittinen et al (ed) (2013) ECO2—Wood in carbon efficient construction—tools, methods and applications. ISBN 978–9-0820-9081-9Google Scholar
  41. Le Roux S, Ott S (2014) Book 6 TES sustainability—Smart TES. http://www.tesenergyfacade.com/downloads/smarttes_b6_Sustainability. Accessed 20 Mar 2016
  42. Mantau U (2012) Holzrohstoffbilanz Deutschland, Entwicklung und Szenarien der Holzverwendung 1987 bis 2015 [Wooden raw material stock Germany, development and scenarios of wood consumption 1987 to 2015], Universität HamburgGoogle Scholar
  43. Neubauer-Letsch B et al (2013) Mehrgeschossige Hybridbauten in der Schweiz—Markt und Holzeinsatz. http://www.forumholzbau.com/pdf_13/nl83_BFHAHB.pdf. Accessed 10 Mar 2016 [Multi-story Hybrid Buildings in Switzerland]
  44. Nore K, Ollson M (2014) Potential energy savings by using wood surfaces in bathrooms. In: Proceedings of the world conference of timber engineering 2014. Quebec, CanadaGoogle Scholar
  45. Passer A, Fischer G, Sölkner P, Spraun S (2014) Innovative building technologies and technical equipment towards sustainable construction—a comparative LCA and LCC assessment. Conference: sustainable Built Environment Conference 2016 in Hamburg: Strategies, Stakeholders, Success factors, 7th–11th March 2016; Conference Proceedings, Hamburg, Germany, Volume: 2016Google Scholar
  46. ReB (2017) Resource efficient Building, Ruhr-University Bochum: greenhouse gas balances for timber buildings—implementation of new requirements for life-cycle assessments and calculation of empiric substitution factors. ISBN:978-3-00-055101-7Google Scholar
  47. Rüter S (2011) Projection of net-emissions from harvested wood products in European Countries—for the period 2013–2020. Johann Heinrich von Thünen-Institut, Hamburg, p 63Google Scholar
  48. Rüter S, Diederichs S (2012) Ökobilanz-Basisdaten für Bauprodukte aus Holz [Life cycle assessment datasets for building products made from wood]. Universität Hamburg, Thünen-Institute of Wood Research, Report No: 2012/01Google Scholar
  49. Sathre R, O´Connor J (2010) Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ Sci Policy 13:104–114CrossRefGoogle Scholar
  50. Suzuki M (1979) Holzhäuser in Europa. [Timber buildings in Europe]. W. Kohlhammer, StuttgartGoogle Scholar
  51. Takano A, Hughes M, Winter S (2014a) A multidisciplinary approach to sustainable building material selection: a case study in Finnish context. Build Environ 82:526–535CrossRefGoogle Scholar
  52. Takano A, Winter S, Hughes M, Linkosalmi L (2014b) Comparison of life cycle assessment databases: a case study on building assessment. Build Environ 79:20–30CrossRefGoogle Scholar
  53. Trømborg E, Ranta T, Schweinle J, Solberg B, Skjevrak G, Tiffany DG (2013) Economic sustainability for wood pellets production—a comparative study between Finland, Germany, Norway, Sweden and the US. Biomass Bioenerg 57:68–77CrossRefGoogle Scholar
  54. Umweltbundesamt (Ed) (2014) Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll 2014—Nationaler Inventarbericht zum Deutschen Treibhausgasinventar 1990–2012 [Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2014- National Inventory Report for the German Greenhouse Gas Inventory 1990–2012]. Dessau 2014Google Scholar
  55. Weidema B, Thrane M, Christensen P, Schmidt J, Løkke S (2008) Carbon footprint—a catalyst for life cycle assessment? J Ind Ecol 12(1):3–6CrossRefGoogle Scholar
  56. Weißenberger M, Jensch W, Lang W (2014) The convergence of life cycle assessment and nearly zero-energy buildings: the case of Germany. Energy Build 76:551–557CrossRefGoogle Scholar
  57. Wiedmann T (2009) Carbon-footprint and input-output analysis—an introduction. Econ Syst Res 21(3):175–186CrossRefGoogle Scholar
  58. Wolf C, Klein D, Weber-Blaschke G, Richter K (2016) Systematic review and meta-analysis of life cycle assessments for wood energy services. J Ind Ecol 20(4):743–763CrossRefGoogle Scholar
  59. Ximenes FA, Grant T (2013) Quantifying the greenhouse benefits of the use of wood products in two popular house designs in Sydney, Australia. Int J Life Cycle Assess 18(4):891–908CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Ruhr-UniversityBochumGermany

Personalised recommendations