European Journal of Wood and Wood Products

, Volume 76, Issue 3, pp 999–1007 | Cite as

Integration of peroxide delignification and sulfamic acid sulfation methods for obtaining cellulose sulfates from aspen wood

  • Boris Kuznetsov
  • Vladimir Levdansky
  • Svetlana Kuznetsova
  • Natalya Garyntseva
  • Irina Sudakova
  • Alexander Levdansky


A new method to obtain cellulose sulfates from available and inexpensive raw material—aspen wood was developed. This method integrates catalytic peroxide delignification and sulfamic acid sulfation stages. Solvents such as acetic acid and water were used for isolation of pure cellulose by wood peroxide delignification with TiO2 catalyst. Low-aggressive and less-toxic sulfating agent—sulfamic acid–urea mixture was used to obtain cellulose sulfates.



The reported study was supported by Russian Science Foundation, Grant no. 16-13-10326.


  1. Al-Horani RA, Desai UR (2010) Chemical sulfation of small molecules—advances and challenges. Tetrahedron 66:2907–2918CrossRefPubMedPubMedCentralGoogle Scholar
  2. ASTM D1795 (2013) Standard Test method for intrinsic viscosity of cellulose. ASTM International, West Conshohocken, PA, p 6Google Scholar
  3. Chen G, Zhang B, Zhao J, Chen H (2013) Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution. Carbohyd Polym 95:332–337CrossRefGoogle Scholar
  4. Fengel D (1992) Characterization of cellulose by deconvoluting the OH valence range in FTIR spectra. Holzforschung 46:283–288CrossRefGoogle Scholar
  5. Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromol 12:P 1956–1972CrossRefGoogle Scholar
  6. Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8 - synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9:343–353CrossRefPubMedGoogle Scholar
  7. Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12CrossRefPubMedGoogle Scholar
  8. Huang X, Zhang WD (2012) Preparation of cellulose sulfate and evaluation of its properties. J Fiber Bioeng Inf 3:32–39CrossRefGoogle Scholar
  9. Kuznetsov BN, Tarabanko VE, Kuznetsova SA (2008) New catalytic methods for obtaining cellulose and other chemical products from vegetable biomass. Kinet Catal  49:517–526CrossRefGoogle Scholar
  10. Kuznetsov BN, Sudakova IG, Garyntseva NV, Djakovitch L, Pinel C (2013) Kinetic study of aspen-wood sawdust delignification by H2O2 with sulfuric acid catalyst under the mild conditions. Reac Kinet Mech Cat 110:271–280CrossRefGoogle Scholar
  11. Kuznetsov BN, Kuznetsova SA, Levdansky VA, Levdansky AV, Vasil’eva NY, Chesnokov NV, Ivanchenko NM, Djakovitch L, Pinel C (2015) Optimized methods for obtaining cellulose and cellulose sulfates from birch wood. Wood Sci Technol 49:825–843CrossRefGoogle Scholar
  12. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294CrossRefPubMedGoogle Scholar
  13. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMedGoogle Scholar
  14. Pala H, Mota M, Gama FM (2007) Enzymatic depolymerisation of cellulose. Carbohyd Polym 68:101–108CrossRefGoogle Scholar
  15. Park S, Baker JO, Himmel ME, Parilla PA, Jonson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRefPubMedPubMedCentralGoogle Scholar
  16. Qin Z, Ji L, Yin X, Zhu L, Lin Q, Qin J (2014) Synthesis and characterization of bacterial cellulose sulfates using a SO3/pyridine complex in DMAc/LiCl. Carbohyd Polym 101:947–953CrossRefGoogle Scholar
  17. Rossberg C, Steffien D, Bremer M, Koenig S, Carvalheiro F, Duarte LC, Moniz P, Hoernicke M, Bertau M, Fischer S (2014) Pulp properties resulting from different pretreatments of wheat straw and their influence on enzymatic hydrolysis rate. Biores Technol 169:206–212CrossRefGoogle Scholar
  18. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRefPubMedGoogle Scholar
  19. Shibata T (2011) Cellulose and its derivatives in medical use. In: Peter A, Williams (eds) Renewable resources for functional polymers and biomaterials: polysaccharides, proteins and polyesters. RSC Publishing, Cambridge, pp 48–87CrossRefGoogle Scholar
  20. Sixta H (2006) Handbook of pulp. Wiley–VCH Verlug SmbH and Co, WeinheimCrossRefGoogle Scholar
  21. Sjöström E, Alen R (1999) Analytical methods in wood chemistry, pulping and papermaking. Springer Series in Wood Science, Springer-Verlag, BerlinCrossRefGoogle Scholar
  22. Tappi standard (1998) Acid-insoluble lignin in wood and pulp. Standard T 222 Om-98. Technical association of the pulp and paper industry, Atlanta, p 5Google Scholar
  23. Wagenknecht W, Nehls I, Philipp B (1993) Studies on the regioselectivity of cellulose sulfation in an N2O4N,N-dimethylformamide–cellulose system. Carbohyd Res 240:245–252CrossRefGoogle Scholar
  24. Wang ZM, Li L, Zheng BS, Normakhamatov N, Guo SY (2007) Preparation and anticoagulation activity of sodium cellulose sulfate. Int J Biol Macromol 41:376–382CrossRefPubMedGoogle Scholar
  25. Wang ZM, Li L, Xiao KJ, Wu JY (2009) Homogeneous sulfation of bagasse cellulose in an ionic liquid and anticoagulant activity. Bioresource Technol 100:1687–1690CrossRefGoogle Scholar
  26. Zhang K, Brendler E, Fischer S (2010) FT Raman investigation of sodium cellulose sulfate. Cellulose 17:427–435CrossRefGoogle Scholar
  27. Zhang K, Brendler E, Geissler A, Fischer S (2011) Synthesis and spectroscopic analysis of cellulose sulfates with regulable total degrees of substitution and sulfation patterns via 13C NMR and FT Raman spectroscopy. Polymer 52:26–32CrossRefGoogle Scholar
  28. Zhang Q, Lin D, Yao S (2015) Review on biomedical and bioengineering applications of cellulose sulfate. Carbohyd Polym 132:311–322CrossRefGoogle Scholar
  29. Zhu L, Qin J, Yin X, Ji L, Lin Q, Qin Z (2014) Direct sulfation of bacterial cellulose with a ClSO3H/DMF complex and structure characterization of the sulfates. Polym Advan Technol 25:168–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Boris Kuznetsov
    • 1
    • 2
  • Vladimir Levdansky
    • 1
  • Svetlana Kuznetsova
    • 1
    • 2
  • Natalya Garyntseva
    • 1
  • Irina Sudakova
    • 1
  • Alexander Levdansky
    • 1
  1. 1.Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations