Skip to main content
Log in

Integration of peroxide delignification and sulfamic acid sulfation methods for obtaining cellulose sulfates from aspen wood

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

A new method to obtain cellulose sulfates from available and inexpensive raw material—aspen wood was developed. This method integrates catalytic peroxide delignification and sulfamic acid sulfation stages. Solvents such as acetic acid and water were used for isolation of pure cellulose by wood peroxide delignification with TiO2 catalyst. Low-aggressive and less-toxic sulfating agent—sulfamic acid–urea mixture was used to obtain cellulose sulfates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Horani RA, Desai UR (2010) Chemical sulfation of small molecules—advances and challenges. Tetrahedron 66:2907–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ASTM D1795 (2013) Standard Test method for intrinsic viscosity of cellulose. ASTM International, West Conshohocken, PA, p 6

  • Chen G, Zhang B, Zhao J, Chen H (2013) Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution. Carbohyd Polym 95:332–337

    Article  CAS  Google Scholar 

  • Fengel D (1992) Characterization of cellulose by deconvoluting the OH valence range in FTIR spectra. Holzforschung 46:283–288

    Article  CAS  Google Scholar 

  • Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromol 12:P 1956–1972

    Article  Google Scholar 

  • Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8 - synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9:343–353

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhang WD (2012) Preparation of cellulose sulfate and evaluation of its properties. J Fiber Bioeng Inf 3:32–39

    Article  Google Scholar 

  • Kuznetsov BN, Tarabanko VE, Kuznetsova SA (2008) New catalytic methods for obtaining cellulose and other chemical products from vegetable biomass. Kinet Catal  49:517–526

    Article  Google Scholar 

  • Kuznetsov BN, Sudakova IG, Garyntseva NV, Djakovitch L, Pinel C (2013) Kinetic study of aspen-wood sawdust delignification by H2O2 with sulfuric acid catalyst under the mild conditions. Reac Kinet Mech Cat 110:271–280

    Article  CAS  Google Scholar 

  • Kuznetsov BN, Kuznetsova SA, Levdansky VA, Levdansky AV, Vasil’eva NY, Chesnokov NV, Ivanchenko NM, Djakovitch L, Pinel C (2015) Optimized methods for obtaining cellulose and cellulose sulfates from birch wood. Wood Sci Technol 49:825–843

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  PubMed  Google Scholar 

  • Pala H, Mota M, Gama FM (2007) Enzymatic depolymerisation of cellulose. Carbohyd Polym 68:101–108

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Jonson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin Z, Ji L, Yin X, Zhu L, Lin Q, Qin J (2014) Synthesis and characterization of bacterial cellulose sulfates using a SO3/pyridine complex in DMAc/LiCl. Carbohyd Polym 101:947–953

    Article  CAS  Google Scholar 

  • Rossberg C, Steffien D, Bremer M, Koenig S, Carvalheiro F, Duarte LC, Moniz P, Hoernicke M, Bertau M, Fischer S (2014) Pulp properties resulting from different pretreatments of wheat straw and their influence on enzymatic hydrolysis rate. Biores Technol 169:206–212

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  PubMed  Google Scholar 

  • Shibata T (2011) Cellulose and its derivatives in medical use. In: Peter A, Williams (eds) Renewable resources for functional polymers and biomaterials: polysaccharides, proteins and polyesters. RSC Publishing, Cambridge, pp 48–87

    Chapter  Google Scholar 

  • Sixta H (2006) Handbook of pulp. Wiley–VCH Verlug SmbH and Co, Weinheim

    Book  Google Scholar 

  • Sjöström E, Alen R (1999) Analytical methods in wood chemistry, pulping and papermaking. Springer Series in Wood Science, Springer-Verlag, Berlin

    Book  Google Scholar 

  • Tappi standard (1998) Acid-insoluble lignin in wood and pulp. Standard T 222 Om-98. Technical association of the pulp and paper industry, Atlanta, p 5

  • Wagenknecht W, Nehls I, Philipp B (1993) Studies on the regioselectivity of cellulose sulfation in an N2O4N,N-dimethylformamide–cellulose system. Carbohyd Res 240:245–252

    Article  CAS  Google Scholar 

  • Wang ZM, Li L, Zheng BS, Normakhamatov N, Guo SY (2007) Preparation and anticoagulation activity of sodium cellulose sulfate. Int J Biol Macromol 41:376–382

    Article  CAS  PubMed  Google Scholar 

  • Wang ZM, Li L, Xiao KJ, Wu JY (2009) Homogeneous sulfation of bagasse cellulose in an ionic liquid and anticoagulant activity. Bioresource Technol 100:1687–1690

    Article  CAS  Google Scholar 

  • Zhang K, Brendler E, Fischer S (2010) FT Raman investigation of sodium cellulose sulfate. Cellulose 17:427–435

    Article  Google Scholar 

  • Zhang K, Brendler E, Geissler A, Fischer S (2011) Synthesis and spectroscopic analysis of cellulose sulfates with regulable total degrees of substitution and sulfation patterns via 13C NMR and FT Raman spectroscopy. Polymer 52:26–32

    Article  CAS  Google Scholar 

  • Zhang Q, Lin D, Yao S (2015) Review on biomedical and bioengineering applications of cellulose sulfate. Carbohyd Polym 132:311–322

    Article  CAS  Google Scholar 

  • Zhu L, Qin J, Yin X, Ji L, Lin Q, Qin Z (2014) Direct sulfation of bacterial cellulose with a ClSO3H/DMF complex and structure characterization of the sulfates. Polym Advan Technol 25:168–172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The reported study was supported by Russian Science Foundation, Grant no. 16-13-10326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, B., Levdansky, V., Kuznetsova, S. et al. Integration of peroxide delignification and sulfamic acid sulfation methods for obtaining cellulose sulfates from aspen wood. Eur. J. Wood Prod. 76, 999–1007 (2018). https://doi.org/10.1007/s00107-017-1262-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-017-1262-z

Navigation