Skip to main content
Log in

Predicting the bending properties of air dried and modified Populus tremula L. wood using combined air-coupled ultrasound and electrical impedance spectroscopy

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Air-coupled ultrasound and electrical impedance spectroscopy are non-destructive measurement methods, which can be used, for example for quality assessment of sawn timber. Both methods may be used in through-transmission and one-sided reflection mode to measure internal properties and detect defects in wood materials. The ultrasound method is based on mechanical waves and is mainly affected by the mechanical properties of wood. Density affects both methods, and the electrical impedance method is especially affected by moisture content and the chemical properties of wood. In this study, the relations between the methods and the bending properties of air dried and modified aspen (Populus tremula L.) specimens were examined. The modification method was a combination of compression and thermal modification. According to the study, electrical impedance spectroscopy combined with air-coupled ultrasound measured across the grain is a potential non-destructive technique for the strength estimation of aspen wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bhardwaj MC (2004a) Evolution of piezoelectric transducers to full scale non-contact ultrasonic analysis mode. In: Proceedings of 16th World Conference on Nondestructive Testing, August 30th–September 3rd, Montreal, Canada

  • Bhardwaj MC (2004b) High efficiency non-contact transducers and a very high coupling piezoelectric composite. In: Proceedings of 16th World Conference on Nondestructive Testing, August 30th–September 3rd, Montreal, Canada

  • Bodig J, Jayne BA (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold, New York

    Google Scholar 

  • Boonstra MJ, Van Acker J, Tjeerdsma BF, Kegel EV (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann For Sci 64(7):679–690

    Article  Google Scholar 

  • Brännström M (2009) Integrated strength grading. Dissertation, Luleå University of Technology, Skellefteå, Sweden

  • Bucur V (2010) Delamination detection in wood–based composites, a methodological review. In: Burgess M, Davey J, Don C, McMinn T (eds) Proceedings of 20th International Congress on Acoustics, ICA, August 23rd–27th, Sydney, Australia, pp 23–27

  • Bucur V (2011) Delamination in wood, wood products and wood-based composites. Springer, Dordrecht

    Book  Google Scholar 

  • Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. Bioresources 4(1):370–404

    CAS  Google Scholar 

  • Gan TH, Hutchins DA, Green RJ, Andrews MK, Harris PD (2005) Noncontact, high-resolution ultrasonic imaging of wood samples using coded chirp waveforms. IEEE T Ultrason Ferr 52(2):280–288

    Article  Google Scholar 

  • Hanhijärvi A, Ranta-Maunus A (2008) Development of strength grading of timber using combined measurement techniques. Report of the Combigrade Project-Phase 2. VTT Publications 686, VTT, Espoo

    Google Scholar 

  • Heräjärvi H (2009) Effect of drying technology on aspen wood properties. Silva Fenn 43(3):433–445

    Article  Google Scholar 

  • Hilbers U, Thoemen H, Hasener J, Fruehwald A (2012) Effects of panel density and particle type on the ultrasonic transmission through wood-based panels. Wood Sci Technol 46(4):685–698

    Article  CAS  Google Scholar 

  • ISO 3133 (1975) Determination of ultimate strength in static bending. ICS 79.040, ISO/TC 218

  • ISO 3349 (1976) Broadleaved wood raw parquet blocks—classification of beech parquet blocks. ICS 79.040, ISO/TC 218

  • Junkkonen R, Heräjärvi H (2006) Physical properties of European and hybrid aspen wood after three different drying treatments. In: Kurjatko S, Kudela J, Lagana R (eds) Proceedings of the 5th International Symposium Wood Structure and Properties’06, September 3–6, 2006, Sliač–Sielnica. Arbora Publishers, Slovakia, pp 257–263

    Google Scholar 

  • Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Holz Roh Werkst 60:1–6

    Article  CAS  Google Scholar 

  • Marchetti B, Munaretto R, Revel G, Tomasini EP, Bianche VB (2004) Non-contact ultrasonic sensor for density measurement and defect detection on wood. 16th World Conference on Nondestructive Testing, Montreal, Canada, August 30th–September 3rd

  • Möttönen V, Marttila J, Heräjärvi H (2014a) Impact of compression and thermal modification on mechanical properties of silver birch and European aspen wood. In: Parrotta JA, Moser CF, Scherzer AJ, Koerth NE, Lederle DE (eds.) Sustaining forests, sustaining people: The role of research. XXIV IUFRO World Congress, 5–11 October 2014, Salt Lake City, UT. Abstracts. Commonwealth Forestry Association, Int For Rev 16(5):444

  • Möttönen V, Marttila J, Heräjärvi H, Luostarinen K (2014b) Density profile and set-recovery of sawn wood after industrial scale THM processing. In proceedings: Processing Technologies for the Forest and Biobased Products Industries PTF BPI 2014 at the Salzburg University of Applied Sciences Kuchl/Austria, pp. 601–607

  • Möttönen V, Bütün Y, Heräjärvi H, Marttila J, Kaksonen H (2015) Effect of combined compression and thermal modification on mechanical performance of Aspen And Birch Wood. Pro Ligno 11(4):310–317

    Google Scholar 

  • Niemz P, Mannes D (2012) Non-destructive testing of wood and wood-based materials. J Cult Herit 13(3):26–34

    Article  Google Scholar 

  • Pellerin RF, Ross RJ (2002) Nondestructive evaluation of wood. Forest Products Society, Madison

    Google Scholar 

  • Ranta-Maunus A, Denzler JK, Stapel P (2011) Strength of European timber—Part 2. Properties of spruce and pine tested in Gradewood project. VTT Working papers 179, VTT, Espoo

    Google Scholar 

  • Sanabria S (2012) Air-coupled ultrasound propagation and novel non-destructive bonding quality assessment of timber composites. Dissertation, ETH No 20404. Swiss Federal Institute of Technology Zürich, Switzerland

    Google Scholar 

  • Sanabria SJ, Furrer R, Neuenschwander J, Niemz P, Sennhauser U (2011) Air-coupled ultrasound inspection of glued laminated timber. Holzforschung 65(3):377–387

    Article  CAS  Google Scholar 

  • Sanabria SJ, Furrer R, Neuenschwander J, Niemz P, Sennhauser U (2013a) Novel slanted incidence air-coupled ultrasound method for delamination assessment in individual bonding planes of structural multi-layered glued timber laminates. Ultrasonics 53(7):1309–1324

    Article  CAS  PubMed  Google Scholar 

  • Sanabria SJ, Hilbers U, Neuenschwander J, Niemz P, Sennhauser U, Thömen H, Wenker JL (2013b) Modeling and prediction of density distribution and microstructure in particleboards from acoustic properties by correlation of non-contact high-resolution pulsed air-coupled ultrasound and X-ray images. Ultrasonics 53(1):157–170

    Article  CAS  PubMed  Google Scholar 

  • Sanabria SJ, Furrer R, Neuenschwander J, Niemz P, Schütz P (2015) Analytical modeling, finite-difference simulation and experimental validation of air-coupled ultrasound beam refraction and damping through timber laminates, with application to non-destructive testing. Ultrasonics 63:65–85

    Article  PubMed  Google Scholar 

  • Sandberg D, Navi P (2007) Introduction to thermo-hydro-mechanical (THM) wood processing. School of Technology and Design, Reports No. 30. Växjö University, Sweden

    Google Scholar 

  • Saranpää P, Strömberg M (2004) Haavan ja hybridihaavan kuituominaisuudet (Fibre properties of Populus tremula L. and Populus tremula x tremuloides). Metsätieteen aikakauskirja 1/2004. pp. 76–78 (in Finnish)

  • Sebera V, Kotlinova M, Tippner J, Kloiber M (2010) Numerical simulation of elastic wave propagation in wood with defined tree rings. Wood Res 55 (3):1–12

    Google Scholar 

  • Skaar C (1988) Wood-water relations. Springer Verlag, Berlin

    Book  Google Scholar 

  • Tiitta M, Olkkonen H (2002) Electrical impedance spectroscopy device for measurement of moisture gradients in wood. Rev Sci Instrum 73(8):3093–3100

    Article  CAS  Google Scholar 

  • Tiitta M, Savolainen T, Olkkonen H, Kanko T (1999) Wood moisture gradient analysis by electrical impedance spectroscopy. Holzforschung 53(1):68–76

    Article  CAS  Google Scholar 

  • Tomppo L, Tiitta M, Laakso T, Harju A, Venäläinen M, Lappalainen R (2011) Study of stilbene and resin acid content of Scots pine heartwood by electrical impedance spectroscopy (EIS). Holzforschung 65(5):643–649

    Article  CAS  Google Scholar 

  • Tomppo L, Tiitta M, Lappalainen R (2014) Non-destructive evaluation of checking in thermally modified timber. Wood Sci Technol 48(2):227–238

    Article  CAS  Google Scholar 

  • Tomppo L, Tiitta M, Lappalainen R (2016) Air-coupled ultrasound and electrical impedance analyses of normally dried and thermally modified Scots pine (Pinus sylvestris). Wood Mater Sci Eng 11(5):274–282

    Article  Google Scholar 

  • Torgovnikov GI (1993) Dielectric properties of wood and wood-based materials. Springer-Verlag, Berlin

    Book  Google Scholar 

  • van der Beek J, Tiitta M, Tomppo L, Lappalainen R (2011) Moisture content determination of thermally modified timber by electrical and ultrasound methods. Int Wood Prod J 2(2):60–66

    Article  Google Scholar 

  • Vun RY, Bhardwaj MC (2004) Non-contact ultrasonic characterization of in-plane density variation in oriented strandboard. 16th World Conference on Nondestructive Testing, Montreal, Canada, August 30th–September 3rd

  • Vun RY, Hoover K, Janowiak J, Bhardwaj M (2008) Calibration of non-contact ultrasound as an online sensor for wood characterization: Effects of temperature, moisture, and scanning direction. Appl Phys A 90(1):191–196

    Article  CAS  Google Scholar 

  • Welzbacher CR, Wehsener J, Haller P, Rapp AO (2006). Biologische und mechanische Eigenschaften von verdichteter und thermisch behandelter Fichte (Picea abies) (Biological and mechanical properties of densified and thermally treated spruce (Picea abies)) (in German). Holztechnologie 3:13–18

    Google Scholar 

  • Widmann R, Fernandez-Cabo JL, Steiger R (2012) Mechanical properties of thermally modified beech timber for structural purposes. Eur J Wood Prod 76(6):775–784

    Article  Google Scholar 

  • Zelinka SL, Stone DR, Rammer DS (2007) Equivalent circuit modeling of wood at 12% moisture content. Wood Fiber Sci 39(4):556–565

    CAS  Google Scholar 

  • Zelinka SL, Rammer DR, Stone DS (2008) Impedance spectroscopy and circuit modeling of southern pine above 20 % moisture content. Holzforschung 62(6):737–744

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by ERDF (EU) and Centre for Economic Development, Transport and the Environment (North Savo, project S12261), The Vocational Training Association of Woodworking Men, and Korwensuun Konetehdas Ltd. which also performed the modification treatments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tomppo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiitta, M., Tomppo, L., Möttönen, V. et al. Predicting the bending properties of air dried and modified Populus tremula L. wood using combined air-coupled ultrasound and electrical impedance spectroscopy. Eur. J. Wood Prod. 75, 701–709 (2017). https://doi.org/10.1007/s00107-016-1140-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-016-1140-0

Keywords

Navigation