Skip to main content
Log in

Bio-transformed sawdust by white rot fungi used as a carrier for plant growth-promoting bacteria

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

This study assessed the bio-transformation of sawdust wood waste by a white rot fungi consortium and explores the use of the final product as a carrier for plant growth-promoting bacteria. During 75 days, Tabebuia roseae and Eucalyptus pellita (1:1) sawdust wood were used as growing substrates for Ganoderma lucidum, Pleurotus ostreatus, Trametes versicolor and Phanerochaete chrysosporium. Then, bio-transformed sawdust was evaluated as carrier of two strains of Enterobacter sp. and one strain of Stenotrophomonas maltophilia. Biologic activity and viability were determined at two storage temperatures (23–4 °C) for 60 days. Sawdust mixture was bio-transformed by white rot fungi. After 45 days, the carbon/nitrogen ratio was reduced up to 46 %, and 4.8 mg/g of CO2 of residue was produced. Enzymatic activities attained a peak of 36.7 and 0.8 U g−1 for laccase and manganese peroxidase, respectively in 45 days. Population of plant growth-promoting bacteria immobilized in bio-transformed sawdust wood decreased to 105 CFU g−1. However, this concentration and its biologic activity remained stable at 23 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalanine tyrosine mixtures. J Biol Chem 118:531–537

    CAS  Google Scholar 

  • Arora NK, Khare E, Naraian R, Maheshwari DK (2008) Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth promoting rhizobial and pseudomonad strains and their impact on productivity of Trifolium repense. Curr Sci 95(1):90–94

    Google Scholar 

  • Atkin CL, Neilands JB, Phaff HJ (1970) Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotolura, Sporidiobolus and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J Bacteriol 103(3):722–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, de Bashan LE, Prabhu SR, Hernandez PJ (2014) Advances in plant growth-promoting bacterial inoculant tecnology: formulations and practical perspectives (1998–2013). Plant Soil 318:1–33

    Article  Google Scholar 

  • Ben Rebah F, Tyagi RD, Prevost D (2002) Wastewater sludge as a substrate for growth and carrier for rhizobia: the effect of storage conditions on survival of Sinorhizobium meliloti. Bioresour Technol 83:145–151

    Article  CAS  PubMed  Google Scholar 

  • Borràs E, Llorens-Blanch G, Rodríguez C, Sarrà M, Caminal G (2011) Soil colonization by Trametes versicolor grown on lignocellulosic materials: substrate selection and naproxen degradation. Int Biodeterior Biodegrad 65(6):846–852

    Article  Google Scholar 

  • Cao-Hoang L, Dumont F, Marechal PA, Le-Thanh M, Gervais P (2007) Rates of chilling to 0 °C: implications for the survival of microorganisms and relationship with membrane fluidity modifications. Appl Microbiol Biotechnol 77:1379–1387

    Article  PubMed  Google Scholar 

  • Castro S, Roa C, Ariza LA (2007) Efecto de la inoculación de una bacteria endófita en el crecimiento y desarrollo de Tabebuia en etapa de vivero (Effect of the inoculation of endophytic bcteria on Tabebuia growth and development at nursery stage). Suelos Ecuatoriales 37(1):61–65

    Google Scholar 

  • Chi Y, Hatakka A, Maijala P (2007) Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes?. Int Biodeter Biodegr 59:32–39

    Article  CAS  Google Scholar 

  • Collins C, Lyne P (1989) Métodos microbiológicos (Microbiologial methods). Acribia, España

    Google Scholar 

  • D´Souza SF, Godbole SS (2002) Immobilization of invertase on rise husk using polyethylenimine. J Biochem Biophys Methods 52:59–62

    Article  Google Scholar 

  • Ferreira AP, DaSilva IR, Sedarati MR, Hedger JN (2006) Changes in production of lignin degrading enzymes during interactions between mycelia of the tropical decomposer basidiomycetes Marasmiellus troyanus and Marasmius pallescens. Mycol Res 110:161–168

    Article  Google Scholar 

  • Fuhr M, Schubert M, Schwarze F, Herrmann H (2011) Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biol 115(919):932

    Google Scholar 

  • Gilles M, Zhao J, An M, Agboola S (2010) Chemical composition and antimicrobial properties of essential oils of three Australian Eucalytus species. Food Chem 119:731–737

    Article  CAS  Google Scholar 

  • Gordon DA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26(1):192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafeez F, Idris U, Malik K (1989) Growth and survival of cowpea Bradyrhizobiun various carrier materials. Biol Fert Soil 7:279–282

    Article  Google Scholar 

  • Hale L, Luth M, Kenney R, Crowley D (2014) Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Appl Soil Ecol 84:192–199

    Article  Google Scholar 

  • Hastrup ACS, Howell C, Larsen FH, Sathitsuksanoh N, Goodell B, Jellison J (2012) Differences in crystalline cellulose modification due to degradation by brown and white rot fungi. Fungal Biol 116:1052–1063

    Article  CAS  PubMed  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. J Appl Microbiol Biotechnol 97:8859–8873

    Article  CAS  Google Scholar 

  • Huang XL, Zhang J (2008) Kinetic spectrophotometric determination of submicromolar orthophosphate by molybdate reduction. Microchem J 89:58–71

    Article  CAS  Google Scholar 

  • Huang D, Zeng G, Feng C, Hu S, Zhao MH, Lai C, Zhang Y, Jiang XY, Liu HL (2010) Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress. Chemosphere 81:1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Zhang W, Gai Y et al (2012) Patterns of lignocellulose degradation and secretome analysis of Trametes trogii MT. Int Biodeterior Biodegrad 75:55–62

    Article  CAS  Google Scholar 

  • Jonathan SG, Fasidi IO, Ajayi AO, Adegeye O (2008) Biodegradation of Nigerian wood wastes by Pleurotus tuber-regium (Fries) Singer. Bioresour Technol 99:807–811

    Article  CAS  PubMed  Google Scholar 

  • Knezevic A, Milovanovic I, Stajic M, Vukojevic J (2013) Potential of Trametes species to degrade lignin. Int Biodeter Biodegr 85:52–56

    Article  CAS  Google Scholar 

  • Leconte MC, Mazzarino MJ, Satti P, Iglesias MC, Laos F (2009) Co-composting rice hull and/or sawdust with poultry manure in NE Argentina. Waste Manag 29:2446–2453

    Article  CAS  PubMed  Google Scholar 

  • Lekounougou S, Mounguengui S, Dumarçay S, Rose C, Courty PE, Garbaye J, Gérardin P, Jacquot JP, Gelhaye E (2008) Initial stage of Fagus sylvatica wood colonization by the white-rot basidiomycete Trametes versicolor: enzymatic characterization. Int Biodeter Biodegr 61:287–293

    Article  CAS  Google Scholar 

  • Levin L, Herrmann C, Papinutti VL (2008) Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem Eng J 39:207–214

    Article  CAS  Google Scholar 

  • Liew CY, Husaini A, Hussain H, Muid S, Liew KC, Roslanet HA (2011) Lignin biodegradation and ligninolytic enzyme studies during biopulping of Acacia mangium wood chips by tropical white rot fungi. World J Microbiol Biotechnol 27:1457–1468

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Ann Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biol Biochem 43:609–619

    Article  Google Scholar 

  • Mathieu Y, Gelhaye E, Dumarçay S, Gérardin P, Harvengt L, Buée M (2013) Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology. J Microbiol Methods 92:157–163

    Article  CAS  PubMed  Google Scholar 

  • Nigam P, Pandey A (2009) Biotechnology for agro-industrial residues utilization: utilization of agro-residues. Springer, New York, pp 170–207

    Book  Google Scholar 

  • Palonen H, Viikari L (2004) Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol Bioeng 86(5):550–557

    Article  CAS  PubMed  Google Scholar 

  • Philippoussis AN, Diamantopoulou PA, Zervakis GI (2003) Correlation of the properties of several lignocellulosic substrates to the crop performance of the shiitake mushroom Lentinula edodes. World J Microbiol Biotechnol 19:551–557

    Article  Google Scholar 

  • Piškur B, Bajc M, Robek R et al (2011) Influence of Pleurotus ostreatus inoculation on wood degradation and fungal colonization. Bioresour Technol 102:10611–10617

    Article  PubMed  Google Scholar 

  • Podorozhko E, Lozinsky V, Ivshina I, Kuyukina M, Krivorutchko A, Philp J, Cunningham C (2008) Hydrophobised sawdust as a carrier for immobilisation of the hydrocarbon-oxidizing bacterium Rhodococcus ruber. Bioresour Technol 99:2001–2008

    Article  CAS  PubMed  Google Scholar 

  • Quevedo-Hidalgo B, Narvaéz-Rincon PC, Pedroza-Rodriguez AM et al (2012) Degradation of chrysanthemum (Dendranthema grandiflora) waste by Pleurotus ostreatus for the production of reducing sugar. Biotechnol Bioprocess Eng 17:1103–1112

    Article  CAS  Google Scholar 

  • Robinson SC, Tudor D, Cooper PA (2011) Feasibility of using red pigment producing fungi to stain wood for decorative applications. Can J Forest Res 41(8):1722–1728

    Article  Google Scholar 

  • Salinas J, García R (1985) Métodos químicos para el análisis de suelos (Chemical methods for soil analysis). Centro Internacional de Agricultura Tropical (CIAT) Programa de Pastos tropicales, Colombia

  • Santoyo F, Gonzalez AE, Terron MC, Ramirez L, Pisabarro AG (2008) Quantitative linkage mapping of lignin-degrading enzymatic activities in Pleurotus ostreatus. Enzyme Microb Technol 43:137–143

    Article  CAS  Google Scholar 

  • Schwarze FWMR (2007) Wood decay under the microscope. Fungal Biol Rev 21:133–170

    Article  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P et al (2008) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microb Biotechnol 24:955–960

    Article  CAS  Google Scholar 

  • Shanmugam V, Kanoujia N, Singh M, Singh S, Prasad R (2011) Biocontrol of vascular wilt and corm rot of gladiolus caused by Fusarium oxysporum f. sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Prot 30:807–813

    Article  Google Scholar 

  • Simon EH, Tessman I (1963) Thymidine-requiring mutants of phage T4. Proc Natl Acad Sci USA 50(3):526–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons KL, Sheppard PJ, Adetutu EM, Ball A (2013) Carrier mounted bacterial consortium facilitates oil remediation in the marine environment. Bioresour Technol 134:107–116

    Article  CAS  PubMed  Google Scholar 

  • Sulochana MB, Jayachandra SY, Kumar SA, Parameshwar AB, Mohan Reddy K, Dayanand A (2014) Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25. Appl Biochem Biotechnol 174:297–308

    Article  CAS  PubMed  Google Scholar 

  • Tinoco R, Pickard MA, Vazquez R (2001) Kinetic differences of purified laccases from six Pleurotus ostreatus strains. Lett Appl Microbiol 32:331–335

    Article  CAS  PubMed  Google Scholar 

  • Tortella GR, Diez MC, Duran N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31(4):197–212

    Article  CAS  PubMed  Google Scholar 

  • Trejo A, de Bashan LE, Hartmann A, Hernandez J-P, Rothballer M, Schmid M, Bashan Y (2012) Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environ Exp Bot 75:65–73

    Article  Google Scholar 

  • Tripathi S, Das A, Chandra A, Varma A (2015) Development of carrier-based formulation of root endophyte Piriformospora indica and its evaluation on Phaseolus vulgaris L. World J Microbiol Biotechnol 31:337–344

    Article  CAS  PubMed  Google Scholar 

  • Tuomi T, Heino M, Rosenqvist H, Nordström K, Laakso S (2001) Fiber fractions from processing of barley in production and conservation of a biologic control agent. Appl Biochem Biotechnol 94:135–145

    Article  CAS  PubMed  Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597

    Article  PubMed  Google Scholar 

  • Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Yu M, Chen Y, Huang D, Zhang J, Huang H, Jiang R, Yu Z (2010) Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresour Technol 101:222–227

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported and funded by Vicerrectoría Académica de la Pontificia Universidad Javeriana (Project 00004583) and COLCIENCIAS (Project 00005384). The authors thank Refocosta S.A.S for providing the sawdust waste used in this study. Authors thank Jorge Andres Fernandez Gonzales for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aura Marina Pedroza-Rodríguez.

Ethics declarations

Conflicts of interest

The authors have declared that no competing interests exist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1631 kb)

Supplementary material 2 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Higuera, N.S., Pava-Sánchez, A.M., Pinzón Rangel, D.L. et al. Bio-transformed sawdust by white rot fungi used as a carrier for plant growth-promoting bacteria. Eur. J. Wood Prod. 75, 263–273 (2017). https://doi.org/10.1007/s00107-016-1099-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-016-1099-x

Keywords

Navigation