Skip to main content
Log in

Comparison of the flexural behavior of natural and thermo-hydro-mechanically densified Moso bamboo

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The flexural properties in the longitudinal direction for natural and thermo-hydro-mechanically densified Moso bamboo (Phyllostachys pubescens Mazel) culm wall material are measured. The modulus of elasticity (MOE) and modulus of rupture (MOR) increase with densification, but at the same density, the natural material is stiffer and stronger than the densified material. This observation is primarily attributed to bamboo’s heterogeneous structure and the role of the parenchyma in densification. The MOE and MOR of both the natural and densified bamboo appear linearly related to density. Simple models are developed to predict the flexural properties of natural bamboo. The structure of the densified bamboo is modelled, assuming no densification of bamboo fibers, and the flexural properties of densified bamboo are then predicted using this structure and the same cell wall properties of that of the natural material modelling. The results are then compared with those for two analogous structural bamboo products: Moso bamboo glulam and scrimber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H (1997) Fiber texture and mechanical graded structure of bamboo. Compos Part B Eng 28B:13–20

    Article  CAS  Google Scholar 

  • Archila-Santos HF, Ansell MP, Walker P (2014) Elastic properties of thermo-hydro-mechanically modified bamboo (Guadua angustifolia Kunth) measured in tension. Key Eng Mater 600:111–120

    Article  Google Scholar 

  • Ashby MF (2000) Multi-objective optimization in material design and selection. Acta Mater 48:359–369

    Article  CAS  Google Scholar 

  • Bodig J, Jayne BA (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold, New York

    Google Scholar 

  • Borrega M, Kärenlampi PP (2008) Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz Roh- Werkst 66:63–69

    Article  CAS  Google Scholar 

  • Dixon PG, Gibson LJ (2014) The structure and mechanics of Moso bamboo material. J R Soc Interface 11:20140321

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon PG, Ahvenainen P, Aijazi AN et al (2015) Comparison of the structure and flexural properties of Moso, Guadua and Tre Gai bamboo. Constr Build Mater 90:11–17

    Article  Google Scholar 

  • Esteves BM, Pereira HM (2009) Wood modification by thermal treatment: a review. BioResources 4:370–404

    CAS  Google Scholar 

  • FAO (2010) Global forest resources assessment 2010. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Forest Products Laboratory (2010) Wood handbook. Forest Products Laboratory USDA, Madison

    Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gritsch CS (2004) developmental changes in cell wall structure of phloem fibres of the bamboo dendrocalamus asper. Ann Bot 94:497–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Grosser D, Liese W (1971) On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Sci Technol 5:290–312

    Article  Google Scholar 

  • Inoue M, Norimoto M, Tanahashi M, Rowell RM (1993) Steam or heat fixation of compressed wood. Wood Fiber Sci 25:224–235

    CAS  Google Scholar 

  • Jiang Z (2007) Bamboo and rattan in the world. China Forestry Publishing House, Beijing

    Google Scholar 

  • Kamke FA (2006) Densified radiata pine for structural composites. Maderas Cienc Tecnol 8:83–92

    Article  Google Scholar 

  • Kamke FA, Casey LJ (1988) Fundamentals of flakeboard manufacture: internal-mat conditions. For Prod J 38:38–44

    CAS  Google Scholar 

  • Kamke FA, Rathi VM (2011) Apparatus for viscoelastic thermal compression of wood. Eur J Wood Wood Prod 69:483–487

    Article  Google Scholar 

  • Kamke FA, Sizemore H (2008) Viscoelastic thermal compression of wood. US Patent 7404422 B2, 29 July 2008

  • Kutnar A, Kamke FA, Sernek M (2008) The mechanical properties of densified VTC wood relevant for structural composites. Holz Roh- Werkst 66:439–446

    Article  CAS  Google Scholar 

  • Kutnar A, Kamke FA, Sernek M (2009) Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci Technol 43:57–68

    Article  CAS  Google Scholar 

  • Lam F (2001) Modern structural wood products. Prog Struct Eng Mater 3:238–245

    Article  Google Scholar 

  • Lee AWC, Bai X, Peralta PN (1996) Physical and mechanical properties of strandboard made from moso bamboo. For Prod J 46:84–88

    Google Scholar 

  • Liese W (1987) Research on bamboo. Wood Sci Technol 21:189–209

    Article  Google Scholar 

  • Liese W, Weiner G (1996) Ageing of bamboo culms. A review. Wood Sci Technol 30:77–89

    Article  CAS  Google Scholar 

  • Liu H, Jiang Z, Zhang X, Liu X, Sun Z (2014) Effect of fiber on tensile properties of moso bamboo. BioResources 9:6888–6898

    CAS  Google Scholar 

  • Lo TY, Cui H, Leung H (2004) The effect of fiber density on strength capacity of bamboo. Mater Lett 58:2595–2598

    Article  CAS  Google Scholar 

  • Semple KE, Kamke FA, Kutnar A, Smith GD (2013) Exploratory thermal-hydro-mechanical modification (THM) of moso bamboo (Phyllostachys pubescens Mazel). In: Medved S, Kutnar A (eds) Characterisation of modified wood in relation to wood bonding and coating performance. Rogla, Slovenia, pp 220–227

    Google Scholar 

  • Semple KE, Vnučec D, Kutnar A et al (2015a) Bonding of THM modified Moso bamboo (Phyllostachys pubescens Mazel) using modified soybean protein isolate (SPI) based adhesives. Eur J Wood Wood Prod 73:781–792

    Article  CAS  Google Scholar 

  • Semple KE, Zhang PK, Smith GD (2015b) Hybrid oriented strand boards made from Moso bamboo (Phyllostachys pubescens Mazel) and Aspen (Populus tremuloides Michx.): species-separated three-layer boards. Eur J Wood Wood Prod 73:527–536

    Article  CAS  Google Scholar 

  • Semple KE, Zhang PK, Smith GD (2015c) Stranding moso and guadua bamboo. Part I. Strand production and size classification. BioResources 10:4048–4064

    CAS  Google Scholar 

  • Semple KE, Zhang PK, Smith GD (2015d) Stranding moso and guadua bamboo. Part II. Strand surface roughness and classification. BioResources 10:4599–4612

    CAS  Google Scholar 

  • Shao Z-P, Fang C-H, Huang S-X, Tian G-L (2010) Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure. Wood Sci Technol 44:655–666

    Article  CAS  Google Scholar 

  • Sharma B, Gatóo A, Bock M, Ramage M (2015a) Engineered bamboo for structural applications. Constr Build Mater 81:66–73

    Article  Google Scholar 

  • Sharma B, Gatóo A, Ramage MH (2015b) Effect of processing methods on the mechanical properties of engineered bamboo. Constr Build Mater 83:95–101

    Article  Google Scholar 

  • Sharma B, Gatoo A, Bock M et al. (2015c) Engineered bamboo: state of the art. Proc ICE Constr Mater 168:57–67

    Article  Google Scholar 

  • Shaw MC, Sata T (1966) The plastic behavior of cellular materials. Int J Mech Sci 8:469–478

    Article  Google Scholar 

  • Smulski S (1997) Engineered wood products: a guide for specifiers, designers and users. PFS Res Found, Madison

    Google Scholar 

  • Sumardi I, Ono K, Suzuki S (2007) Effect of board density and layer structure on the mechanical properties of bamboo oriented strandboard. J Wood Sci 53:510–515

    Article  Google Scholar 

  • Sumardi I, Suzuki S, Rahmawati N (2015) Effect of board type on some properties of bamboo strandboard. J Math Fundam Sci 47:51–59

    Article  CAS  Google Scholar 

  • van der Lugt P (2008) Design interventions for stimulating bamboo commercialization: Dutch design meets bamboo as a replicable model. Doctoral, VSSD

    Google Scholar 

  • Vogtländer J, van der Lugt P, Brezet H (2010) The sustainability of bamboo products for local and Western European applications. LCAs and land-use. J Clean Prod 18:1260–1269

    Article  Google Scholar 

  • Wang XQ, Li XZ, Ren HQ (2010) Variation of microfibril angle and density in moso bamboo (Phyllostachys pubescens). J Trop For Sci 22:88–96

    Google Scholar 

  • Wang Y, Leppänen K, Andersson S, Serimaa R, Ren H, Fei B (2012) Studies on the nanostructure of the cell wall of bamboo using X-ray scattering. Wood Sci Technol 46:317–332

    Article  CAS  Google Scholar 

  • Wang H, An X, Li W, Wang H, Yu Y (2014) Variation of mechanical properties of single bamboo fibers (Dendrocalamus latiflorus Munro) with respect to age and location in culms. Holzforschung 68:291–297

    CAS  Google Scholar 

  • Winistorfer PM, Moschler WW, Wang S, DePaula E, Bledsoe BL (2000) Fundamentals of vertical density profile formation in wood composites. Part I. In-situ density measurement of the consolidation process. Wood Fiber Sci 32:209–219

    CAS  Google Scholar 

  • Wolcott MP, Kamke FA, Dillard DA (1994) Fundamental aspects of wood deformation pertaining to manufacture of wood-based composites. Wood Fiber Sci 26:496–511

    CAS  Google Scholar 

  • Yildiz S, Gezer ED, Yildiz UC (2006) Mechanical and chemical behavior of spruce wood modified by heat. Build Environ 41:1762–1766

    Article  Google Scholar 

  • Yu Y, Fei B, Zhang B, Yu X (2007) Cell-wall mechanical properties of bamboo investigated by in situ imaging nanoindentation. Wood Fiber Sci 39:527–535

    CAS  Google Scholar 

  • Yu Y, Zhu R, Wu B, Hu Y, Yu W (2015) Fabrication, material properties, and application of bamboo scrimber. Wood Sci Technol 49:83–98

    Article  CAS  Google Scholar 

  • Zhang YM, Yu YL, Yu WJ (2013) Effect of thermal treatment on the physical and mechanical properties of phyllostachys pubescen bamboo. Eur J Wood Wood Prod 71:61–67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper is based upon work supported by the National Science Foundation under OISE: 1258574. The views expressed in this paper are not endorsed by the National Science Foundation. Research at UBC on densification of bamboo was supported by the National Science and Engineering Research Council of Canada (NSERC), and the Green Building Materials Laboratory at Oregon State University (OSU). We would like to thank Alan Schwartzman for training and assistance with the Hysitron TriboIndenter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Gibson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixon, P.G., Semple, K.E., Kutnar, A. et al. Comparison of the flexural behavior of natural and thermo-hydro-mechanically densified Moso bamboo. Eur. J. Wood Prod. 74, 633–642 (2016). https://doi.org/10.1007/s00107-016-1047-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-016-1047-9

Keywords

Navigation