European Journal of Wood and Wood Products

, Volume 74, Issue 1, pp 31–36 | Cite as

Describing the sticking phenomenon of aminoplastic resins: dependency on temperature and relative humidity

  • Alexandra Himsel
  • Hendrikus W. G. van HerwijnenEmail author
  • Johann Moser
  • Wolfgang Kantner
  • Roland Mitter
  • Jürgen Gießwein
  • Ulrich Müller


A previously developed rheometer-based method to examine undesired cold tack (“sticking”) of aminoplastic resins to machinery parts was further modified to enable climate depending measurements. It could be shown that both relative humidity and temperature influence sticking, resulting in a variation in the extent of sticking as well as in the time window of occurrence. The laboratory method has been successfully applied to explain cases of sticking in a particleboard factory.


Relative Humidity Formaldehyde Emission Maximum Torque Residual Water Content Resin Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the European Union and the state of Lower Austria for financial support through EFRE (ERDF; European Regional Development Fund), project number WST3-T-9/021-2012).


  1. ASTM E1333 (2010) Standard test method for determining formaldehyde concentration in air and emission rates from wood products using a large chamber. Annu Book ASTM Stand 04:10Google Scholar
  2. Barbu MC, Resch H, Pruckner M (2000) Aspekte der Benetzbarkeit von MDF-Platten (on the wettability of medium density fiberboards). Holzforsch Holzverwert 52:63–65Google Scholar
  3. Berthold K (1989) Lexikon der Holztechnik (Lexicon of wood technology). Fachbuchverlag, LeipzigGoogle Scholar
  4. Dunky M (1998) Urea-formaldehyde (UF) adhesive resins for wood. Int J Adhes Adhes 18:95–107CrossRefGoogle Scholar
  5. Dunky M (2003) Adhesives in the Wood Industry. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology, 2nd edn. Marcel Dekker Inc., New York, pp 887–956Google Scholar
  6. Dunky M, Niemz P (2002) Holzwerkstoffe und Leime—Technologie und Einflussfaktoren (wood composites and adhesives—Technology and influencing factors). Springer, Berlin, pp 245–644Google Scholar
  7. EN 923 (2005) Adhesives—terms and definitions. European committee for standardization, BrusselsGoogle Scholar
  8. Gierlińska I, Starzyńska K (1986) Untersuchung der Kaltklebrigkeit von Harnstoff-Formaldehyd-Harzen aus konzentriertem Formalin (Investigation of cold tack of UF resins made from concentrated formalin). Holztechnologie 27:149–151Google Scholar
  9. Hammond FH (1982) Tack. In: Satas D (ed) Handbook of pressure sensitive adhesive technology. R. van Nostrand, New York, pp 38–60Google Scholar
  10. Himsel A, Müller U, Kantner W, Moser J, Mitter R, van Herwijnen HWG (2015a) Novel analytical method to determine factors causing unwanted sticking of glued wood particles onto machinery parts. For Prod J 65(1–2):54–59Google Scholar
  11. Himsel A, Moser J, Kantner W, Mitter R, Gießwein J, van Herwijnen HWG, Müller U (2015b) Describing the sticking phenomenon of aminoplastic resins: introduction of a new test method. Wood Sci Technol 49:681–694CrossRefGoogle Scholar
  12. IARC (2006) IARC Monographs on the evaluation of carcinogenic risks to humans 88: 280Google Scholar
  13. Kantner W, Moser J, Heinemann C, Stöckel F (2009) Novel analyses of low-emission UF and MUF resins. In: Frihart CR, Hunt CG, Moon RJ (eds) Wood adhesives 2009. Forest Products Society, Madison, pp 357–365Google Scholar
  14. Kariz M, Kuzman MK, Sernek M (2013) The effect of heat treatment of spruce wood on the curing of melamine-urea-formaldehyde and polyurethane adhesives. J Adhes Sci Technol 27(17):1911–1920CrossRefGoogle Scholar
  15. Leichti RJ, Hse CY, Tang RC (1988) Effect of synthesis variables on tack in urea-formaldehyde resin. J Adhesion 25:31–44CrossRefGoogle Scholar
  16. Myers G (1984) How mole ration of UF resin affects formaldehyde emission and other properties—a literature critique. For Prod J 34:35–41Google Scholar
  17. Sahaf A, Englund K, Laborie MPG (2012) Tack and shear strength of hybrid adhesive systems made of phenol-formaldehyde, dextrin and fish glue, and acrylic pressure-sensitive adhesive. Holzforschung 66:73–78CrossRefGoogle Scholar
  18. Schlusen K (2008) Low emission panels—experiences of a panel producer, Technical Formaldehyde Conference, 13–14 Mar 2008, WKI, Braunschweig, Germany. In: Steckel V (2008) Formaldehyd und seine Grenzwerte global betrachtet (Formaldehyde and its treshold limit values from a global perspective), Holz-Zentralblatt 15:410–411Google Scholar
  19. Schneider F (2006) Verfahren und Vorrichtung zur Verhinderung von Verunreinigungen einer Transporteinrichtung aufgrund frischbeleimter Fasern (Method and device for prevention of contamination of a transport device by freshly sized fibres). World Patent Application WO 2006050840, 18.05.2006Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexandra Himsel
    • 1
  • Hendrikus W. G. van Herwijnen
    • 1
    Email author
  • Johann Moser
    • 3
  • Wolfgang Kantner
    • 3
  • Roland Mitter
    • 4
  • Jürgen Gießwein
    • 4
  • Ulrich Müller
    • 2
  1. 1.Wood K plus, Competence Centre for Wood Composites and Wood ChemistryLinzAustria
  2. 2.Department of Material Science and Process Engineering, Institute of Wood Technology and Renewable Materials BOKU-University of Natural Resources and Life Sciences, Universitäts-und Forschungszentrum TullnTullnAustria
  3. 3.Metadynea Austria GmbHKremsAustria
  4. 4.Fritz Egger GmbH & Co. OGUnterradlbergAustria

Personalised recommendations