Skip to main content
Log in

Mechanical strength properties of innovative sandwich panels with expanded cork agglomerates

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Sandwich panels with expanded cork agglomerates as core and Aleppo pine wood veneer as face sheets were developed and characterized for compression (in plane and out of plane), traction and bending (three and four point). The load–displacement curves and fracture patterns were analyzed. The expanded cork agglomerate core allowed very good performance under compression while the wood layers strengthened the panel in relation to tensile stresses. Increasing the number of layers had a positive impact on the mechanical performance of the sandwich structure. Such eco-friendly, light and low cost sandwich panels can be used as non-structural construction elements such as partition walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alcantara F, Teixeira D, Paulino M (2013) Cork composites for the absorption of impact energy. Compos Struct 95:16–27

    Article  Google Scholar 

  • Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79:277–299

    Article  CAS  PubMed  Google Scholar 

  • Anjos O, Pereira H, Rosa ME (2008) Effect of quality; porosity and density on the compression properties of cork. Holz Roh Werkst 66(4):295–301

    Article  Google Scholar 

  • Anjos O, RodriguesC Morais J, Pereira H (2014) Effect of density on the compression behaviour of cork. Mater Design 53:1089–1096

    Article  Google Scholar 

  • Baptista APM, Vaz MDC (1993) Comparative wear testing of flooring materials. Wear 162:990–995

    Article  Google Scholar 

  • Castro O, Silva JM, Devezas T, Silva A, Gil L (2010) Cork agglomerates as an ideal core material in lightweight structures. Mater Design 31:425–432

    Article  CAS  Google Scholar 

  • Diaz A, Diaz MA, Macias A, Rosa P, Serrano V (2003) Bending strength of black and composite agglomerates of cork. Mater Lett 57:4004–4008

    Article  Google Scholar 

  • Fernandes R, Moura MFSF, Silva FGA, Dourado N (2014) Mode I fracture characterization of a hybrid cork and carbon–epoxy laminate. Compos Struct 112:248–253

    Article  Google Scholar 

  • Ferreira E, Pereira H (1986) Some anatomical and chemical changes in manufacturing cork black agglomerates. Cortiça 576:274–279

    Google Scholar 

  • Fortes MA, Rosa ME, Pereira H (2004) A cortiça, IST Press, Lisboa

  • Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. University Press, Cambridge

    Google Scholar 

  • Gibson LJ, Easterling KE, Ashby MF (1981) The structure and mechanics of cork. In: Proceedings of the Royal Society London series A-Math Phys Eng Sci 377:99-117

  • Gil L (2007) Cork as a building material. Technical manual, APCOR, Portugal

  • Gil L (2009) Cork composites: a review. Materials 2(3):776–789

    Article  CAS  Google Scholar 

  • Moreira RAS, Melo FJQ, Dias Rodrigues JF (2010) Static and dynamic characterization of composition cork for sandwich beam cores. J Mater Sci 45(12):3350–3366

    Article  CAS  Google Scholar 

  • NFT 54-602 (1983) Plastics based sandwich structures-perpendicular compression test, Afnor 83647

  • NFT 54-603 (1983) Plastics based sandwich structures-perpendicular tensile test, Afnor 83648

  • NFT 54-604 (1986) Plastics based sandwich structures–longitudinal compression test without or with buckling, Afnor 86618

  • NFT 54-606 (1987) Plastics based sandwich structures-bend test, Afnor 87461

  • Pereira H (1992) The thermochemical degradation of cork. Wood Sci Technol 26:259–269

    Article  CAS  Google Scholar 

  • Pereira H (2007) Cork: biology, production and uses. Elsevier, Amsterdam

    Google Scholar 

  • Pereira H, Baptista C (1993) Influence of raw material quality and process parameters in the production of insulation cork agglomerates. Holz Roh Werkst 51(5):301–308

    Article  CAS  Google Scholar 

  • Pereira H, Ferreira E (1989) Scanning electron microscopy observation of insulation cork agglomerates. Mater Sci Eng A111:217–225

    Article  CAS  Google Scholar 

  • Pinto A, Melo B (1988) Insulation: black agglomerated cork and other insulating materials. Cortiça 602:322–328

    Google Scholar 

  • Reis L, Silva A (2009) Mechanical behaviour of sandwich structures using natural cork agglomerates as core materials. J Sandw Struct Mater 11:487–500

    Article  Google Scholar 

  • Rosa ME, Fortes MA (1988a) Temperature induced alterations of the structure and mechanical properties of cork. Mater Sci Eng 100:69–78

    Article  CAS  Google Scholar 

  • Rosa ME, Fortes MA (1988b) Rate effects on the compression and recovery of dimensions of cork. J Mater Sci 23(3):879–885

    Article  Google Scholar 

  • Rosa ME, Pereira H (1994) The effect of long term treatment at 100°C–150°C on structure, chemical composition and compression behavior of cork. Holzforschung 48:226–232

    Article  CAS  Google Scholar 

  • Sen A, Velez Marques A, Gominho J, Pereira H (2012) Study of thermochemical treatments of cork in the 150 400 & #xB0;C range using colour analysis and FTIR spectroscopy. Ind Crop Prod 38:132–138

    Article  CAS  Google Scholar 

  • Sen A, Van den Bulcke J, Defoirdt N, Jo Van Acker, Pereira H (2014) Thermal behaviour of cork and cork components. Thermochim Acta 582:94–100

    Article  CAS  Google Scholar 

  • Shivakumar Kl, Chen H (2009) Structural performance of eco-core sandwich panels. In: Daniel IM, Gdoutos EE, Rajapakse YDS (eds) Major Accomplishments in Composite Materials and Sandwich Structures, Springer Netherlands, pp 381–405

  • Silva SP, Sabino MA, Fernandes EM, Correlo VM, Boesel LF, Reis RL (2005) Cork: properties, capabilities and applications. Int Mater Rev 50(6):345–365

    Article  CAS  Google Scholar 

  • Simoes N, Moreira A, Branco FG (2007) Effect of natural and expanded granulated cork on strength and thermal behaviour of concrete. In: 35th IAHS World Congress on Housing-planning design construction performance. Melbourne, Australia, pp 4–7

  • Sousa-Martins J, Kakogiannis D, Coghe F, Reymen B, Teixeira-Dias F (2013) Behaviour of sandwich structures with cork compound cores subjected to blast wave. Eng Struct 46:140–146

    Article  Google Scholar 

  • Vaz MF, Fortes MA (1998) Friction properties of cork. J Mater Sci 33:2087–2093

    Article  Google Scholar 

  • Vinson JR (1999) The behaviour of sandwich structures of isotropic and composite materials. Technomic Publishing Co, Lancaster

    Google Scholar 

  • Zenkert D (1997) The handbook of sandwich construction. EMAS Publishing, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Lakreb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakreb, N., Bezzazi, B. & Pereira, H. Mechanical strength properties of innovative sandwich panels with expanded cork agglomerates. Eur. J. Wood Prod. 73, 465–473 (2015). https://doi.org/10.1007/s00107-015-0908-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-015-0908-y

Keywords

Navigation