Skip to main content
Log in

Prediction of non-recoverable collapse in Eucalyptus globulus from near infrared scanning of radial wood samples

Vorhersage von nicht rückverformbarem Kollaps in radialen Eucalyptus globulus Prüfkörpern mittels Nah-Infrarot-Spektrometrie

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Near infrared (NIR) spectroscopy calibrations was used to predict radial profiles of cellulose content, wood density, cellulose microfibril angle (MFA) and modulus of elasticity (MOE) in 20-year-old plantation Eucalyptus globulus to identify non-recoverable collapse zones associated with tension wood. Radial (cambium-to-pith) wood cores were extracted at a height of 1.0 m from trees selected to represent a range of silvicultural treatments. NIR spectra were measured at 1 mm intervals along the radial-longitudinal face of each core after drying to 12 % equilibrium moisture content (EMC) at 40 °C. Tangential shrinkage was measured at eight points along each core, following steam reconditioning and re-drying to 12 % EMC. Additional cores from 20 of the sample trees were collected. Radial profiles of density, MFA and MOE were obtained for wood strips prepared from these cores, using the SilviScan 3 wood assessment system. Trait profiles were matched to radial NIR scans of these cores, enabling the development of NIR calibrations using partial least squares (PLS) regression. These, and an existing NIR calibration for cellulose content, were used to predict the radial profiles of the four wood properties for the first set of cores. Predicted wood properties were then related to actual tangential shrinkage measurements and the occurrence of visible bands of non-recoverable collapse. A regression model was developed to reliably predict regions of non-recoverable collapse from NIR-predicted cellulose content and MOE. Micrography of stained wood sections indicated that the collapse was caused by the presence of tension wood.

Zusammenfassung

Mittels NIR-Spektroskopie wurden radiale Profile des Zellulosegehalts, der Holzdichte, des Cellulose-Mikrofibrillenwinkels (MFA) und des Elastizitätsmoduls (MOE) von 20 Jahre alten Plantagen-Eucalyptus globulus erstellt, um nicht rückverformbare Kollapsbereiche in Verbindung mit Zugholz zu erkennen. Radiale Bohrkerne (vom Kambium zur Markröhre) wurden aus Bäumen, die verschiedene waldbauliche Behandlungsverfahren repräsentieren, in 1,0 m Höhe entnommen. Nah-Infrarot (NIR)-Spektren wurden entlang der radialen/longitudinalen Fläche eines jeden Kerns in 1 mm Abständen gemessen, nachdem diese bei 40 °C auf eine Gleichgewichtsfeuchte (ECM) von 12 % getrocknet worden waren. Nach Dampfkonditionierung und erneuter Trocknung auf 12 % EMC wurde das tangentiale Schwindmaß an acht Stellen entlang eines jeden Kerns gemessen. Aus 20 der untersuchten Bäume wurden zusätzliche Kerne entnommen. Radiale Dichte-, MFA- und MOE-Profile wurden an Holzstreifen aus diesen Kernen mittels des Holzanalysegeräts SilviScan 3 erstellt. Aus den Eigenschaftsprofilen und den radialen NIR-Scans dieser Kerne wurden mittels partieller Regression NIR-Kalibrierungen entwickelt. Diese sowie eine bestehende NIR-Kalibrierung des Zellulosegehalts wurden zur Bestimmung der radialen Profile der vier Holzeigenschaften des ersten Kernkollektivs verwendet. Die so bestimmten Holzeigenschaften wurden dann mit den aktuell gemessenen tangentialen Schwindmaßen und dem Auftreten sichtbarer Banden von nicht rückverformbarem Kollaps in Beziehung gebracht. Es wurde ein Regressionsmodell entwickelt, mit dem die Bereiche mit nicht rückverformbarem Kollaps aus dem mittels NIR bestimmten Cellulosegehalt und dem Elastizitätsmodul zuverlässig bestimmt werden können. Mikroskopische Aufnahmen gefärbter Holzabschnitte wiesen darauf hin, dass der Kollaps durch das Auftreten von Zugholz verursacht wurde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb.1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7

Similar content being viewed by others

References

  • Boyd JD (1977) Relationship between fibre morphology and shrinkage of wood. Wood Sci Technol 11(1):3–22

    Article  Google Scholar 

  • Breusch TS, Pagan AR (1979) A simple test for heteroscedasticity and random coefficient variation. Econometrica 47(5):1287–1294

    Article  Google Scholar 

  • Bruker (2005) OPUS Spektroskopiesoftware. QUANT Ver 5.5. Bruker Optik GmbH, Ettlingen

    Google Scholar 

  • Chafe SC, Barnacle JE, Hunter AJ, Ilic J, Northway R, Rozsa AN (1992) Collapse: an introduction. CSIRO Divison of Forestry and Forest Products, Melbourne

    Google Scholar 

  • Chaffey N (2000) Microfibril orientation in wood cells: new angles on an old topic. Trends Plant Sci 5(9):360–362

    Article  PubMed  CAS  Google Scholar 

  • Chauhan SS, Walker J (2011) Wood quality in artificially inclined 1-year-old trees of Eucalyptus regnans: differences in tension wood and opposite wood properties. Can J For Res 41(5):930–937

    Article  Google Scholar 

  • Downes G, Meder R, Ebdon N, Bond H, Evans R, Joyce K, Southerton S (2010) Radial variation in cellulose content and Kraft pulp yield in Eucalyptus nitens using near-infrared spectral analysis of air-dry wood surfaces. J Near Infrared Spectrosc 18(2):147–155

    Article  CAS  Google Scholar 

  • Downes GM, Meder R, Bond H, Ebdon N, Hicks C, Harwood C (2011) Measurement of cellulose content, kraft pulp yield and basic density in eucalypt woodmeal using multisite and multispecies near infra-red spectroscopic calibrations. South For J For Sci 73(3/4):181–186

    Google Scholar 

  • Downes G, Harwood C, Weidemann J, Ebdon N, Bond H, Meder R (2012) Radial variation in Kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy. Can J For Res 42(8):1577–1586

    Article  CAS  Google Scholar 

  • Edwards AL (1976) An introduction to linear regression and correlation. W. H. Freeman, San Francisco

    Google Scholar 

  • Evans R (1994) Rapid measurement of the transverse dimensions of tracheids in radial wood sections from Pinus radiata. Holzforschung 48(2):168–172

    Article  Google Scholar 

  • Evans R (1999) A variance approach to the X-ray diffractometric estimation of microfibril angle in wood. Appita J 52(4):283–289

    Google Scholar 

  • Evans R (2006) Wood stiffness by x-ray diffractometry. In: Stokke DD, Groom LH (eds) Characterization of the cellulosic cell wall. Blackwell Publishing, Oxford, pp 138–146

    Chapter  Google Scholar 

  • Evans R, Ilic J (2001) Rapid prediction of wood stiffness from microfibril angle and density. For Prod J 51(3):53–57

    Google Scholar 

  • Evans R, Stringer S, Kibblewhite R (2000) Variation of microfibril angle, density and fibre orientation in twenty-nine Eucalyptus nitens trees. Appita J 53(6):450–457

    Google Scholar 

  • IAWA (1964) Multilingual glossary of terms used in wood anatomy. Verlagsanstalt Buchdruckerei Konkordia, Winterhur

    Google Scholar 

  • Kauman WG (1964) Cell collapse in wood-1. Process variables and collapse recovery. Holz Roh Werkst 22(5):183–196

    Article  Google Scholar 

  • Kubler H (1988) Silvicultural control of mechanical stresses in trees. Can J For Res 18(10):1215–1225

    Article  Google Scholar 

  • Medhurst J, Downes G, Ottenschlaeger M, Harwood C, Evans R, Beadle C (2012) Intra-specific competition and the radial development of wood density, microfibril angle and modulus of elasticity in plantation-grown Eucalytus nitens. Trees 26(6):1771–1780

    Article  Google Scholar 

  • Michell AJ (1995) Pulpwood quality estimation by near-infrared spectroscopic measurements on eucalypt woods. Appita J 48:425–428

    CAS  Google Scholar 

  • Næs T, Isaakson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate calibration and classification. NIR Publications, Chichester

    Google Scholar 

  • Potts B, Vaillancourt R, Jordan G, Dutkowski G, McKinnon G, Steane D, Volker P, Lopez G, Apiolaza L, Li Y (2004) Exploration of the Eucalyptus globulus gene pool. In: Proceedings of IUFRO Conference Aveiroro, Eucalyptus in a changing world. RAIZ, Instituto Investigaciao de Floresta e Papel, Portugal, pp 46-61

  • Schimleck L, Michell A, Raymond C, Muneri A (1999) Estimation of basic density of Eucalyptus globulus using near-infrared spectroscopy. Can J For Res 29(2):194–201

    Article  Google Scholar 

  • Schimleck L, Evans R, Ilic J (2001) Estimation of Eucalyptus delegatensis wood properties by near infrared spectroscopy. Can J For Res 31(10):1671–1675

    Google Scholar 

  • Schimleck L, Evans R, Ilic J, Matheson AC (2002) Estimation of wood stiffness of increment cores by near-infrared spectroscopy. Can J For Res 32(1):129–135

    Article  Google Scholar 

  • Schimleck L, Mora C, Daniels RF (2003) Estimation of the physical wood properties of green Pinus taeda radial samples by near infrared spectroscopy. Can J For Res 33(12):2297–2305

    Article  Google Scholar 

  • Schimleck L, Evans R, Jones PD, Daniels RF, Peter GF, Clark A (2005a) Estimation of microfibril angle and stiffness by near infrared spectroscopy using sample sets having limited wood density variation. IAWA J 26(2):175–187

    Article  Google Scholar 

  • Schimleck L, Jones D, Peter G, Daniels R, Clark A (2005b) Success in using near infrared spectroscopy to estimate wood properties of Pinus taeda radial strips not due to autocorrelation. J Near Infrared Spectrosc 13(1):47–52

    Article  CAS  Google Scholar 

  • Schimleck L, Downes G, Evans R (2006) Estimation of Eucalyptus nitens wood properties by near infrared spectroscopy. Appita J 59(2):136–141

    Google Scholar 

  • Scurfield G (1973) Reaction wood: its structure and function. Science 179(4074):647–655

    Article  PubMed  CAS  Google Scholar 

  • Thomas EV (1994) A primer on multivariate calibration. Anal Chem 66(15):A795–A804

    Google Scholar 

  • Touza Vázquez MC (2001) Growth stresses in Eucalyptus globulus from Galicia (Spain). Influences and sawing strategies. (In Spanish) Maderas Ciencia y tecnología 3(1–2):68–89

    Google Scholar 

  • Wada M, Okano T, Sugiyama J, Horii F (1995) Characterization of tension and normally lignified wood cellulose in Populus maximowiczii. Cellulose 2(4):223–233

    Article  CAS  Google Scholar 

  • Wahyudi I, Okuyama T, Hadi YS, Yamamoto H, Yoshida M, Watanabe H (1999) Growth stresses and strains in Acacia mangium. For Prod J 49(2):77–81

    Google Scholar 

  • Wardrop A, Dadswell H (1955) The nature of reaction wood. IV. Variations in cell wall organization of tension wood fibres. Aust J Bot 3(2):177–189

    Article  Google Scholar 

  • Washusen R (2000) The occurrence and characteristics of tension wood and associated wood properties in Eucalyptus globulus Labill, PhD Thesis. The University of Melbourne, Melbourne

  • Washusen R (2002) Tension wood occurrence in Eucalyptus globulus Labill. II. The spatial distribution of tension wood and its association with stem form. Aust For 65(2):127–134

    Article  Google Scholar 

  • Washusen R (2009) The influence of plantation silviculture on tension wood formation. In: Apiolaza L, Chauhan SS, Walker J (eds) Revisiting eucalypts 2009. University of Canterbury, Canterbury, pp 91–100

    Google Scholar 

  • Washusen R, Evans R (2001a) The association between cellulose crystallite width and tension wood occurrence in Eucalyptus globulus. IAWA J 22(3):235–244

    Article  Google Scholar 

  • Washusen R, Evans R (2001b) Prediction of wood tangential shrinkage from cellulose crystallite width and density in one 11-year-old tree of Eucalyptus globulus Labill. Aust For 64(2):123–126

    Article  Google Scholar 

  • Washusen R, Ilic J (2001) Relationship between transverse shrinkage and tension wood from three provenances of Eucalyptus globulus Labill. Holz Roh Werkst 59(1–2):85–93

    Article  Google Scholar 

  • Washusen R, Ades P, Vinden P (2002) Tension wood occurrence in Eucalyptus globulus Labill. I. The spatial distribution of tension wood in one 11-year-old tree. Aust For 65(2):120–126

    Article  Google Scholar 

  • Washusen R, Ilic J, Waugh G (2003) The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10 and 11-year-old Eucalyptus globulus Labill. Holz Roh Werkst 61(4):299–303

    Article  Google Scholar 

  • Washusen R, Baker T, Menz D, Morrow A (2005) Effect of thinning and fertilizer on the cellulose crystallite width of Eucalyptus globulus. Wood Sci Technol 39(7):569–578

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study forms part of Program 2 (High Value Wood Resources) of the Cooperative Research Centre for Forestry, Australia, and was funded by the CRC Forestry and The University of Melbourne. The Tostaree plantation trial was established and maintained with support from the Victorian Department of Sustainability and Environment and the Victorian Department of Primary Industries. We thank Robert Evans for the SilviScan analysis of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Wentzel-Vietheer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wentzel-Vietheer, M., Washusen, R., Downes, G.M. et al. Prediction of non-recoverable collapse in Eucalyptus globulus from near infrared scanning of radial wood samples. Eur. J. Wood Prod. 71, 755–768 (2013). https://doi.org/10.1007/s00107-013-0735-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-013-0735-y

Keywords

Navigation