Skip to main content
Log in

Modifications in the bulk and the surface of unbleached lignocellulosic fibers induced by a heat treatment without water removal: effects on fibre relaxation of PFI-beaten kraft fibers

Modifikation der Zellwand und Oberfläche von ungebleichten lignozellulosischen Fasern infolge einer Temperaturbehandlung: Einfluss der Faserlatenz von PFI gemahlenem Kraftzellstoff

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The effect of heating lab- and mill cooked refined and unrefined unbleached kraft pulp in a rotating lab reactor at different temperatures, pH and consistencies was evaluated based on sheet and fiber properties. The observed significant decrease in tensile strength with increasing temperature was attributed to the drop in fiber bendability and to the drastic increase in fiber curl. The increased fiber curl at increased temperature (labelled as “reversed latency”), was attributed to two potential mechanisms: (a) the removal of hemicelluloses from the fiber bulk and the re-aggregation of the fibrillar cell wall structure and (b) the local damage of the fiber surface and the presence of the fully softened hemicelluloses–lignin-matrix which caused the fiber to bend and kink.

Zusammenfassung

In dieser Studie werden die Faser- und Papiereigenschaften von ungebleichtem ungemahlenem und PFI-gemahlenem Kraftzellstoff in Folge einer Behandlung bei unterschiedlichen Temperaturen, pH-Werten und Konsistenzen untersucht. Die Ergebnisse zeigten beim gemahlenen Zellstoff einen signifikanten Abfall der Zugfestigkeit mit steigender Temperatur. Die gesunkene Zugfestigkeit wurde mit einer geringeren Faserflexibilität und einem signifikanten Anstieg der Faserkräuselung mit steigender Temperatur begründet. Die steigende Faserkräuselung, gekennzeichnet als “reversed latency”, wurde zwei möglichen Mechanismen zugeschrieben: (a) dem Herauslösen von Hemicellulosen aus der Faserwand und der daraus resultierenden Reaggregation der fibrillären Zellwandstrukturen und (b) einer lokalen Schädigung der erweichten Faserwand in Folge der Temperaturbehandlung, wodurch die Fasern lokal knickten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8

Similar content being viewed by others

References

  • Andreasson B, Forsström J, Wagberg L (2003) The porous structure of pulp fibres with different yields and its influence on paper strength. Cellulose 10:111–123

    Article  CAS  Google Scholar 

  • Bachner K, Fischer K, Bäucker E (1993) Zusammenhang zwischen Aufbau der Zellwand und Festigkeitseigenschaften bei Faserstoffen von konventionellen und neuen Aufschlussverfahren. Das Papier 10A:V30–V40

    Google Scholar 

  • Back EL, Salmen L (1982) Glass transition of wood components hold implications for molding and pulping processes. Tappi J 65(7):107–110

    Google Scholar 

  • Banavath HN, Bhardwaj NK, Ray AK (2011) A comparative study of the effect of refining on charge of various pulps. Bioresour Technol 102:4544–4551

    Article  PubMed  CAS  Google Scholar 

  • Bardage S, Donaldson L, Tokoh C, Daniel G (2004) Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces. N Pulp Pap Res J 19(4):448–452

    Article  CAS  Google Scholar 

  • Brännvall E (2007) Aspects on strength delivery and higher utilisation of the strength potential of softwood kraft pulp fibres. PhD thesis, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm

  • Dahlman O, Jacobs A, Sjöberg J (2003) Molecular properties of hemicelluloses located in the surface and inner layers of hardwood and softwood pulps. Cellulose 10:325–334

    Article  CAS  Google Scholar 

  • De Souza IJ, Bouchard J, Methot M, Berry R, Argyropoulus DS (2002) Carbohydrates in oxygen delignification—part 1: changes in cellulose crystallinity. J Pulp Pap Sci 28(5):167–170

    Google Scholar 

  • Ellis MJ, Duffy JJ, Allison RW, Kibblewhite RP (1997) Fiber deformations during medium consistency mixing: role of residence time and impeller geometry. Proc 51st Appita An Gen Conf 2:643–649

    Google Scholar 

  • Evans R, Newman RH, Roick UC, Suckling ID, Wallis FA (1995) Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, X-ray diffraction and solid state NMR results. Holzforschung 49(6):498–504

    Article  CAS  Google Scholar 

  • Forsström J, Torgnysdotter A, Wagberg L (2005) Influence of fibre/fibre joint strength and fibre flexibility on the strength of paper from unbleached kraft fibres. N Pulp Pap Res J 20(2):186–191

    Article  Google Scholar 

  • Freese M, Schmidt I, Fischer K (2006) Hemicellulose composition in the outer cell wall layers of paper grade and dissolving pulp. Macromol Symp 232:13–18

    Article  CAS  Google Scholar 

  • Fung BM, Khitrin AK, Ermolaev K (2007) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    Article  Google Scholar 

  • Gullichsen J, Fogelholm C-J (1999) Chemical pulping, Chapter 2. In: Gullichsen J, Fogelholm C-J (eds) Papermaking science and technology, Book 6A. ISBN: 952-5216-06-3

  • Halonen H (2012) Structural changes during cellulose composite processing. Doctoral thesis, KTH Royal Institute of Technology, Stockholm

  • Harris G, Karnis A (1986) Storage of latent mechanical pulps. J Pulp Pap Sci 12(4):J100–J107

    Google Scholar 

  • Hartler N (1995) Aspects on curled and microcompressed fibers. N Pulp Pap Res J 1:4–7

    Article  Google Scholar 

  • Horvath AE (2003) Appropriate conditions for polyelectrolyte titration to determine the charge of cellulosic fibers. Licentiate thesis, KTH Royal Institute of Technology, Stockholm

  • Htun M, Engstrand P, Salmen L (1988) The implication of lignin softening on latency removal of mechanical and chemimechanical pulps. J Pulp Pap Sci 14(5):J109–J113

    Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Jung TM (2007) Consequences of the nanoporosity of cellulosic fibers on their streaming potential and their interactions with cationic polyelectrolytes. Cellulose 14(6):655–671

    Article  CAS  Google Scholar 

  • Hult E-L, Larsson PT, Iversen T (2000a) A comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55

    Article  CAS  Google Scholar 

  • Hult E-L, Larsson PT, Iversen T (2000b) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  Google Scholar 

  • ISO 1924-3 (2005) Paper and board—determination of tensile properties, part 3_constant rate of elongation method 100 mm/min

  • ISO Standard (2004) 5269-2. Pulps-prep of lab sheets for physical testing, Part 2_Rapid-Köthen method

  • Kangas H, Kleen M (2004) Surface chemical and morphological properties of mechanical pulp fines. N Pulp Pap Res J 19(2):191–199

    Article  CAS  Google Scholar 

  • Karlsson H, Fransson P, Mohlin U-B (1999) STFI Fibermaster. Swedish Association of pulp and paper science (SPCI) 6th international conference on new available technologies, Stockholm, pp 367–374

  • Karnis A (1993) Latency in mechanical pulp fibres. Paperi Ja Puu Pap Timber 75(7):505–511

    CAS  Google Scholar 

  • Knutsson T, Stockman L (1958) The effect of mechanical treatment during the final stages of a cook on beating properties and strength of sulphate pulp. Tappi J 41(11):704–709

    CAS  Google Scholar 

  • Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25

    Article  CAS  Google Scholar 

  • Leitner J (2010) Effects of high temperature treatments on various chemical pulp and paper properties—a review. In: proceedings of the Zukunft Forum Papier—Die österreichische Papierfachtagung, Graz, Austria

  • Leitner J, Zuckerstätter G, Schmied F, Kandelbauer A (2013) Modifications in the bulk and the surface of unbleached lignocellulosic fibers induced by a heat treatment without water removal—effects on tensile properties of unrefined kraft pulp. Europ J Wood Prod 71(1):101–110

    Article  CAS  Google Scholar 

  • Leonhardt W (2003) Faserumformungen beim Kneten im “Hochtemperaturbereich”. Wochenbl Papierfabrikation 131(3):88–93

    CAS  Google Scholar 

  • Liimatainen H, Haapala A, Niinimäki J (2009) Retention of PCC and GCC fillers on chemical pulp fines surfaces. Tappi J 8(9):38–42

    CAS  Google Scholar 

  • Liitiä T, Maunu SL, Hortling B (2001) Solid state NMR studies on inhomogeneous structure of fibre wall in kraft pulp. Holzforschung 55(5):503–510

    Article  Google Scholar 

  • Lindström T (1979) Polyelectrolyte and colloidal behaviour of technical lignins. Dissertation, Royal Institute of Technology, Stockholm

  • Lindström T (1980) Der Einfluß chemischer Faktoren auf Faserquellung und Papierfestigkeit. Das Papier 34(11):561–568

    Google Scholar 

  • Lunan WE, Sferraza MJ, Franzen RG, May WD (1986) Curl-Setting during storage of thermomechanical pulp at high consistency. J Pulp Pap Sci 42(4):J108–J115

    Google Scholar 

  • Lyytikäinen K, Saukkonen E, Kajanto I, Käyhkö J (2011) The effect of hemicelluloses extraction on fiber charge properties and retention behavior of kraft pulp fibers. BioResources 6(1):219–231

    Google Scholar 

  • MacLeod JM, Pelletier LJ (1987) Basket cases: kraft pulps inside digesters. Tappi J 70(11):47–53

    CAS  Google Scholar 

  • Mohlin U-B (1980) Latency in thermomechanical pulps—contribution of the various pulp fractions. Tappi J 63(3):83–86

    CAS  Google Scholar 

  • Mohlin U-B, Pettersson B (2002) Improved papermaking by cellulose treatment before refining. In: Viikari L, Lantto R (eds) Biotechnology in the pulp and paper industry; 8th ICBPPI meeting, Elsevier, Amsterdam, pp 291–299

  • Nyholm K, Ander P, Bardage S, Geoffrey D (2001) Dislocations in pulp fibres—their origin, characteristics and importance—a review. N Pulp Pap Res J 16(4):376–384

    Article  CAS  Google Scholar 

  • Östberg G, Salmen L, Fält A (1990) The softening behavior of different cell wall layers. J Pulp Pap Sci 16(2):J58–J62

    Google Scholar 

  • Page DH, Barbe MC, Seth RS, Jordan BD (1984) The mechanism of curl creation, removal and retention in pulp fibres. J Pulp Pap Sci 5:J74–J79

    Google Scholar 

  • Pavalainen L (1993) Conformability, flexibility and collapsibility of sulphate pulp fibers. Paperi ja puu Pap Timber 75(9–10):689–702

    Google Scholar 

  • Roffael E, Schaller K (1971) Einfluß Thermischer Behandlung auf cellulose. Holz Roh- Werkst 29(7):275–278

    Article  CAS  Google Scholar 

  • Salmen L, Olsson A-M (1998) Interaction between hemicelluloses, lignin and cellulose: structure-property relationships. J Pulp Pap Sci 24(3):99–103

    CAS  Google Scholar 

  • Seth RS (2006) The importance of fiber straightness for pulp strength. Pulp Pap Can 107(1):34–42

    CAS  Google Scholar 

  • Seth RS, Bennington CPJ (1995) Fiber morphology and the response to medium consistency fluidization. Tappi J 78(12):152–154

    CAS  Google Scholar 

  • Sjöberg J, Höglund H (2005) Refining system for sack paper pulp: part 1 HC refining under pressurised conditions and subsequent LC refining. N Pulp Pap Res J 20(3):320–328

    Article  Google Scholar 

  • Stockman L, Teder A (1963) The effect of drying on the properties of papermaking pulps. Part 2 the effect of heat-treatment on the mechanical properties. Svensk Papperstid 66(20):822–833

    Google Scholar 

  • Sundberg A, Pranovich AV, Holmbom B (2003) Chemical characterization of various types of mechanical pulp fines. J Pulp Pap Sci 29(5):173–178

    CAS  Google Scholar 

  • Tschirner U, Barsness J, Keeler T (2007) Recycling of chemical pulp from wheat straw corn stover. BioResources 2(4):536–543

    CAS  Google Scholar 

  • Wan J, Wang Y, Xiao Q (2010) Effects of hemicelluloses removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp. Bioresour Technol 101:4577–4583

    Article  PubMed  CAS  Google Scholar 

  • Welf ES, Benditti RA, Hubbe JJ, Pawlak JJ (2005) The effects of heating without water removal and drying on the swelling measured by water retention value and degradation as measured by intrinsic viscosity of cellulose papermaking fibers. Progr Pap Recycl 14(3):5–13

    CAS  Google Scholar 

  • Winter L, Wagberg L, Ödberg L, Lindström T (1985) Polyelectrolytes absorbed on the surface of cellulosic materials. J Coll Interface Sci 111(2):537–543

    Article  Google Scholar 

  • Zuckerstaetter G, Schild G, Wollboldt P, Roeder T, Weber HK, Sixta H (2009) The elucidation of cellulose supramolecular structure by 13C CP-MAS NMR. Lenzinger Ber 87:38–46

    CAS  Google Scholar 

Download references

Acknowledgments

We want to thank for the technical support of Wood Kplus’ Wood Analytikzentrum for the NMR studies as well as the laboratory staff of Södra Cell AB for the Fiber Master analysis. Special thanks are to Mondi Frantschach GmbH for providing the laboratory equipment and wood chips and also special thanks to Mrs. Yvonne Holzbauer for performing a large part of the tedious laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Leitner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leitner, J., Seyfriedsberger, G. & Kandelbauer, A. Modifications in the bulk and the surface of unbleached lignocellulosic fibers induced by a heat treatment without water removal: effects on fibre relaxation of PFI-beaten kraft fibers. Eur. J. Wood Prod. 71, 725–738 (2013). https://doi.org/10.1007/s00107-013-0723-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-013-0723-2

Keywords

Navigation