Skip to main content
Log in

Changes in dimensional stability and mechanical properties of Eucalyptus pellita by melamine–urea–formaldehyde resin impregnation and heat treatment

Änderungen der Dimensionsstabilität und der mechanischen Eigenschaften von Eucalyptus pellita durch Imprägnierung mit Melaminharnstoffharz und thermischer Modifikation

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

This study investigated the influence of heat treatment on the dimensional stability and mechanical properties of untreated and low molecular weight melamine–urea–formaldehyde (MUF) resin treated Eucalyptus pellita wood. Wood samples were heat treated under vacuum atmosphere in laboratory conditions at temperatures between 160 and 240 °C for 2–10 h. The results showed that anti-shrink efficiency and anti-swelling efficiency of MUF resin-impregnated heat-treated eucalypt wood were improved by up to 47 and 49 % at 240 °C for 10 h separately, which were greater than those of heat-treated wood. In relation to mechanical properties, the modulus of elasticity and modulus of rupture decreased with increasing temperature and time, but the reduction of properties appeared to be smaller for MUF resin-impregnated heat-treated wood. Therefore, heat treatment combined with resin treatment of eucalypt wood shows potential to improve the wood quality of solid wood products.

Zusammenfassung

In dieser Studie wurde der Einfluss einer thermischen Behandlung auf die Dimensionsstabilität und die mechanischen Eigenschaften von unbehandeltem sowie mit niedermolekularem Melaminharnstoffharz (MUF) modifiziertem Eucalyptus pellita Holz untersucht. Prüfkörper wurden unter Laborbedingungen in Vakuumatmosphäre bei Temperaturen zwischen 160–240 °C für eine Dauer von 2 bis 10 Stunden thermisch behandelt. Die Ergebnisse zeigten, dass die Schwindungsvergütung von mit MUF imprägniertem und bei einer Temperatur von 240 °C über 10 Stunden thermisch behandeltem Eukalyptusholz um bis zu 47 % und die Quellungsvergütung um bis zu 49 % verbessert wurden. Die Ergebnisse waren besser als bei nur thermisch behandeltem Holz. Der Elastizitätsmodul und die Biegefestigkeit nahmen mit steigender Temperatur und Behandlungsdauer ab. Diese Abnahme war jedoch bei mit MUF imprägniertem und thermisch behandeltem Holz geringer. Dies zeigt, dass eine thermische Behandlung in Kombination mit einer Harzimprägnierung von Eukalyptusholz eine Möglichkeit ist, die Holzqualität von Massivholzprodukten zu verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5

Similar content being viewed by others

References

  • Bekhta P, Niemz P (2003) Effect of high temperature on the change in colour, dimensional stability and mechanical properties of spruce wood. Holzforschung 57:539–546

    Article  CAS  Google Scholar 

  • Burmester A (1973) Investigation on the dimensional stabilization of wood, Bundesanstalt für Materialprüfung. Berlin, Dahlem, pp 50–56

  • Deka M, Saikia CN, Baruah KK (2002) Studies on thermal degradation and termite resistant properties of chemically modified wood. Bioresour Technol 84:151–157

    Article  PubMed  CAS  Google Scholar 

  • Dirol D, Guyonnet R (1993) Durability by rectification process. In: International Research Group Wood Pre, Section 4-Processes, No IRG/WP 93-40015

  • Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. BioResources 4(1):370–404

    CAS  Google Scholar 

  • Esteves B, Marques AV, Domingos I, Pereira H (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 41:193–207

    Article  CAS  Google Scholar 

  • Esteves BM, Domingos IJ, Pereira HM (2008) Pine wood modification by heat treatment in air. BioResources 3(1):142–154

    CAS  Google Scholar 

  • Furuno T, Goto T (1978) Structure of the interface between wood and synthetic polymer (XI). The role of polymer in the cell wall on the dimensional stability of wood-polymer composite (WPC). Mokuzai Gakkaishi 24(5):287–293

    CAS  Google Scholar 

  • Furuno T, Goto T (1979) Structure of the interface between wood and synthetic polymer (XII). Distribution of styrene polymer in the cell wall of wood-polymer composite (WPC) and dimensional stability. Mokuzai Gakkaishi 25(7):488–495

    CAS  Google Scholar 

  • Furuno T, Imamura Y, Kajita H (2004) The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Sci Technol 37:349–361

    Article  CAS  Google Scholar 

  • GB/T 1932-2009, Method for determination of the shrinkage of wood. Standardization Administration of China, China

  • GB/T 1934.2-2009, Method for determination of the swelling of wood. Standardization Administration of China, China

  • GB/T 1936.2-2009, Method for determination of the modulus of elasticity in static bending of wood. Standardization Administration of China, China

  • GB/T 1936.1-2009, Method of testing in bending strength of wood. Standardization Administration of China, China

  • Gindl W, Dessipri E, Wimmer R (2002) Using UV-microscopy to study diffusion of melamine-urea-formaldehyde resin in cell walls of spruce wood. Holzforschung 56:103–107

    CAS  Google Scholar 

  • Hillis WE (1984) High temperature and chemical effects on wood stability. Wood Sci Technol 18:281–293

    Article  CAS  Google Scholar 

  • Inoue M, Ogata S, Nishikawa M, Otsuka Y, Kawai S, Norimoto M (1993) Dimensional stability, mechanical properties, and color changes of a low molecular weight melamine-formaldehyde resin impregnated wood. Mokuzai Gakkaishi 39:181–189

    CAS  Google Scholar 

  • Jämsä S, Viitaniemi P (2001) Heat treatment of wood-better durability without chemicals. In: Rapp AO (ed) Review on heat treatments of wood. Proceedings of the special seminar, forestry and forestry products, France. COST Action E22, EUR 19885, Antibes, France, 9 February 2001, pp 17–22

  • Jie LK (2005) Wood properties of Eucalyptus Pellita and variation regularities. Central South University of Forestry and Technology, Chang Sha, pp 35–36

    Google Scholar 

  • Luo JZ, Chen SX, Xie YJ, Cao JG, Wu ZH (2009) Eucalypt ice-snow damage pattern and counter measures for safe development. Eucalypt Sci Technol 26(1):41–47

    Google Scholar 

  • Mburu F, Dumarcay S, Bocquet JF, Petrissans M, Gérardin P (2008) Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood. Polymer Degrad Stab 93:401–405

    Article  CAS  Google Scholar 

  • Militz H, Tjeerdsma B (2001) Heat treatment of wood by the Plato-process. In: Rapp AO (ed) Review on heat treatments of wood. Proceedings of the special seminar, forestry and forestry products, France. COST Action E22, EUR 19885, Antibes, France, 9 February 2001, pp 23–34

  • Rapp AO, Sailer M (2001) Heat treatment of wood in Germany-state of the art. In: Rapp AO (ed) Review on heat treatments of wood. Proceedings of the special seminar, forestry and forestry products, France. COST Action E22, EUR 19885, Antibes, France, 9 February 2001, pp 43–60

  • Seborg RM, Tarkow H, Stamm AJ (1953) Effect of heat upon the dimensional stabilization of wood. J For Prod Res Soc 3(3):59–67

    CAS  Google Scholar 

  • Srinivas K, Pandey KK (2012) Effect of heat treatment on color changes, dimensional stability, and mechanical properties of wood. J Wood Chem Technol 32(4):304–316

    Article  CAS  Google Scholar 

  • Syrjanen T, Oy K (2001) Production and classification of heat treated wood in Finland. In: Rapp AO (ed) Review on heat treatments of wood. Proceedings of the special seminar, forestry and forestry products, France. COST Action E22, EUR 19885, Antibes, France, 9 February 2001, pp 7–16

  • Vernois M (2001) Heat treatment of wood in France-state of the art. In: Rapp AO (ed) Review on heat treatments of wood. Proceedings of the special seminar, forestry and forestry products, France. COST Action E22, EUR 19885, Antibes, France, 9 February 2001, pp 35–42

  • Viitaniemi P, Jamsa S, Viitanen H (1997) Method for improving biodegradation resistance and dimensional stability of cellulosic products. United States Patent No 5678324 (US005678324)

  • Wang M, Liu JL, Chai YB, Gao JM (2011) Properties of Cryptomeria Fortunei after strengthening-inflaming retarding treatment. China Wood Ind 25(4):15–17

    Google Scholar 

  • Yildiz S, Gezer ED, Yilditz UC (2006) Mechanical and chemical behaviour of spruce wood modified by heat. Build Environ 41:1762–1766

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the 15th National Scientific and Technological Support Project of China (2006BAD19B0704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, B., Wang, X. & Liu, J. Changes in dimensional stability and mechanical properties of Eucalyptus pellita by melamine–urea–formaldehyde resin impregnation and heat treatment. Eur. J. Wood Prod. 71, 557–562 (2013). https://doi.org/10.1007/s00107-013-0700-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-013-0700-9

Keywords

Navigation