Skip to main content
Log in

Nano-zycosil in MDF: gas and liquid permeability

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Effects of zycosil nanoparticles, with size range from 20 to 80 nm, on liquid and gas permeability of medium density fiberboard were studied. Nanozycosil was used at four consumption levels of 0, 50, 100, and 150 g/kg dry wood fibers. Density of all treatments was kept constant at 0.67 g/cm3. The obtained results indicated that addition of zycosil to the mat resulted in a significant increase in gas permeability due to the lower fiber-content in the nanozycosil-treated specimens and the consequent micro-cavities that were formed in the boards. However, the water-repellant property of zycosil nanoparticles compensated for the micro-cavities to some extent. High correlation was observed between gas and liquid permeability. The consumption level of 50 g of nanozycosil/kg can be recommended to improve the impermeability property of medium density fiberboard to water.

Einfluss von Nano-Zycosil auf die Gas- und Flüssigkeitsdurchlässigkeit mitteldichter Faserplatten Zusammenfassung

Untersucht wurde der Einfluss von Zycosil-Nanopartikeln mit einer Partikelgröße zwischen 20 und 80 nm auf die Flüssigkeits- und Gasdurchlässigkeit von mitteldichten Faserplatten. Nano-Zycosil wurde in den vier Dosierungen 0, 50, 100 und 150 g/kg Spantrockengewicht verwendet. Die Dichte wurde bei allen Behandlungen mit 0,67 g/cm³ konstant gehalten. Die Ergebnisse zeigten, dass durch Zugabe von Zycosil zum Spankuchen die Gaspermeabilität signifikant anstieg. Dies ist auf den niedrigeren Spananteil in den mit Nano-Zycosil behandelten Prüfkörpern sowie die dadurch in den Platten entstandenen Mikrohohlräume zurückzuführen. Die Mikrohohlräume wurden zum Teil durch die wasserabweisende Eigenschaft der Zycosil-Nanopartikel kompensiert. Die Gas- und die Flüssigkeitsdurchlässigkeit waren hoch korreliert. Zur Verbesserung der Wasserundurchlässigkeit mitteldichter Faserplatten können 50 g/kg Nano-Zycosil empfohlen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7

Similar content being viewed by others

References

  • Akhtari M, Ghorbani Kokandeh M, Taghiyari HR (2012) Mechanical properties of Paulownia fortune wood impregnated with silver, copper, and zinc oxide nanoparticles. J Trop Forest Sci 24(4):507–511

    Google Scholar 

  • Awoyemi L (2007) Determination of optimum borate concentration for alleviating strength loss during heat treatment of wood. Wood Sci Technol 42:39–45

    Article  Google Scholar 

  • Awoyemi L, Westermark U (2005) Effects of borate impregnation on the response of wood strength to heat treatment. Wood Sci Tchnol 39:484–491

    Article  CAS  Google Scholar 

  • Baileys JK, Marks BM, Ross AS, Crawford DM, Krzysik AM, Muehl JH, Youngquist JA (2003) Providing moisture and fungal protection to wood-based composites. Forest Prod J 53(1):76–81

    CAS  Google Scholar 

  • Barna M (2011) Natural regeneration of Fagus sylvatica L.: a review. Austrian J Forest Sci 128(2):71–91. ISSN: 03795292

    Google Scholar 

  • Borrega M, Karenlampi PP (2010) Hygroscopicity of heat-treated Norway spruce (Picea abies) wood. Eur J Wood Prod 68:233–235

    Article  CAS  Google Scholar 

  • Dashti H, Salehpur SH, Taghiyari HR, Akbari F, Heshmati S (2012a) The Effect of nanoclay on the mass transfer properties of plywood. Digest J Nanomater Biostructures (DJNB) 7(3):853–860

    Google Scholar 

  • Dashti H, Shahverdi M, Taghiyari HR, Salehpur Sh, Heshmati S (2012b) Effects of steaming and microwave pretreatments on mass transfer characteristics of Aleppe oak (Quercus infectoria). BioResources 7(3):3262–3273

    CAS  Google Scholar 

  • Dermoe D, Zillig W, Carmeliet J (2012) Variation of measured cross-sectional cell dimensions and calculated water vapor permeability across a single growth ring of spruce wood. Wood Sci Technol 46:827–840

    Article  Google Scholar 

  • Dykstra DP (2012) Has reduced-impact logging outlived its usefulness? J Trop Forest Sci 24(1) Guest Editorial

  • Eshaghi S, Faezipour M, Taghiyari HR (2013) Investigation on lateral resistance of joints made with drywall and sheet metal screws in bagasse particleboard and comparison with that of commercial MDF. Maderas-Cienc Tecnol; 15(2) (in press)

  • Gardner DJ, Tascioglu C, Walinder MEP (2003) Wood composite protection. In: B. Goodell, DD Nicholas, TP Schultz (eds) Wood deterioration and preservation: advances in our changing World. American Chemical Society, Washington, DC, pp 399–419

  • Ghorbani M, Akhtari M, Taghiyari HR, Kalantari A (2012) Effects of silver and zinc-oxide nanoparticles on gas and liquid permeability of heat-treated Paulownia wood. Austrian J Forest Sci 129(1):106–123

    Google Scholar 

  • Gogoi M, Deb P (2012) Light scattering behavior of magnetic field induced directional self assembly of iron oxide nanoparticles suspension. NANO J 7(4):1250027. doi:10.1142/S1793292012500270

    Google Scholar 

  • Grace JK (2005) Termite response to agricultural fiber composites: Bagasse. The 36th Annual Meeting of IRG/WP 05-10549, Bangalore, India

  • Heidarpour F, Wan WA, Karimi Ghani AB, Bin Ahmadun FR, Sobri S, Zargara M, Mozafari MR (2011) Nano silver-coated polypropylene water filter: I. Manufacture by electron beam gun using a modified balzers 760 machine. Digest J Nanomater Biostructures 5(3):787–796

    Google Scholar 

  • Hering S, Keunecke D, Niemz P (2012) Moisture-dependent orthotropic elasticity of beech wood. Wood Sci Technol 46:927–938

    Article  CAS  Google Scholar 

  • Kirkpatrick JW, Barnes HM (2006) Biocide treatments for wood composites—a review. The International Research Group on Wood Protection, IRG/WP 06-40323

  • Laks PE (2002) Biodegradation susceptibility of untreated engineered wood products. In: Enhancing the Durability of Lumber and Engineered Wood Products. FPS Symposium Proceedings No. 7249. Forest Products Society, Madison, pp 125–130

  • Lotfizadeh H, Shahverdi M, Dashti H, Taghiyari HR (2012) Potential usage of nanotechnology in wood drying: treating poplar boards with nanometals affects the drying behavior. Digest J Nanomater Biostructures 7(3):2309–2319

    Google Scholar 

  • Mahaptra DR, Willatzen M, Melnik RVN, Lassen B (2012) Modeling heterostructures with Schroedinger–Poisson–Navier interactive schemes, effects of carrier charge, and influence of electromechanical coupling. NANO J 7(4):1250031. doi:10.1142/S1793292012500312

    Google Scholar 

  • Manning MJ (2002) Wood protection processes for engineered wood products. In: Enhancing the durability of lumber and engineered wood products. FPS Symposium Proceedings. Forest Products Society: Madison, pp 131–136

  • Narashimha G, Praveen B, Mallikarjuna K, Deva Prasad Raju B (2011) Mushrooms (Agaricus bisporus) mediated biosynthesis of silver nanoparticles, characterization and their antimicrobial activity. Int J Nano Dim 2(1):29–36

    Google Scholar 

  • Papadopoulos A (2012) Sorption of acetylated pine wood decayed by brown rot, white rot, and soft rot: different fungi—different behavior. Wood Sci Technol 46:919–926

    Article  CAS  Google Scholar 

  • Prondana M, Ionita D, Ungureanu C, Bojin D, Demetrescu I (2011) Enhancing antibacterial effect of multiwalled carbon nanotubes using silver nanoparticles. Digest J Nanomater Biostructures 6(2):549–556

    Google Scholar 

  • Rangavar H, Taghiyari HR, Mehr M (2013) Effects of nanocopper on physical and mechanical properties of MDF. J Trop Forest Sci (Accepted)

  • Rassam Gh, Ghofrani M, Taghiyari HR, Jamnani B (2012) Mechanical performance and dimensional stability of nano-silver impregnated densified spruce wood. Eur J Wood Prod 70:595–600

    Article  CAS  Google Scholar 

  • Sadeghi B, Rastgo S (2012) Study of the shape controlling silver nanoplates by reduction process. Int J Bio-Inorg Hybrid Nanomater 1(1):33–36

    Google Scholar 

  • Shi SHQ (2007) Diffusion model based on Fick’s second law for the moisture absorption process in wood fiber-based composites: is it suitable or not? Wood Sci Technol 41:645–658

    Article  CAS  Google Scholar 

  • Siau JF (1971) Flow in Wood. Syracuse University Press, Syracuse, p 131

    Google Scholar 

  • Siau JF (1995) Wood: influence of moisture on physical properties. Department of Wood Science and Forest Products Virginian Polytechnic Institute and State University, Blacksburg, pp 1–63

    Google Scholar 

  • Soltaninezhad M, Aminifar A (2011) Study nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants. Int J Nano Dim 2(2):137–145

    CAS  Google Scholar 

  • Stockel F, Konnerth J, Moser J, Kantner W, Gindl-Altmutter W (2012) Micromechanical properties of the interphase in pMDI and UF lines. Wood Sci Technol 46:611–620

    Article  Google Scholar 

  • Taghiyari HR (2006) English for Special Purpose: Wood and Paper Sciences and Technology; Karafarinan Publication Organization, ESBN: 964-7284-50-0, p.p. 205

  • Taghiyari HR (2011a) Study on the effect of nanosilver impregnation on mechanical properties of heat-treated Populus nigra. Wood Sci Technol 45:399–404

    Article  CAS  Google Scholar 

  • Taghiyari HR (2011b) Effects of nano-silver on gas and liquid permeability of particleboard. Digest J Nanomater Biostructures (DJNB) 6(4):1509–1517

    Google Scholar 

  • Taghiyari HR (2012a) Correlation between gas and liquid permeabilities in some nanosilver-impregnated and untreated hardwoods. J Trop Forest Sci (JTFS) 24(2):249–255

    Google Scholar 

  • Taghiyari HR (2012b) Fire-retarding properties of nano-silver in solid woods. Springer: Wood Sci Technol 46:939–952

    Article  CAS  Google Scholar 

  • Taghiyari HR (2013) Effects of heat-treatment on permeability of untreated and nanosilver-impregnated native hardwoods. Maderas-Cienc Tecnol 15(2) (in press)

  • Taghiyari HR, Efhami D (2011) Diameter increment response of Populus nigra var. betulifolia induced by alfalfa. Austrian J Forest Sci 128(2):113–127

    Google Scholar 

  • Taghiyari HR, Sarvari Samadi Y (2010) Ultimate length for reporting gas permeability of Carpinus betulus wood. Special Topics Rev Porous Media 1 (4):345–351. doi:10.1615/SpecialTopicsRevPorousMedia.v1.i4.60 (Begell House, inc. publishers)

  • Taghiyari HR, Parsapajouh D, Karimi AN, Pourtahmasi K (2008) Evaluation of Fiber Characteristics in the Juvenile wood and mature wood of Populus deltoids (69) and Populus × euroamericana (214), grown in Gillan Province, Iran. Iran J Nat Resour 61(3):713–722

    Google Scholar 

  • Taghiyari HR, Karimi AN, Parsapajouh D, Pourtahmasi K (2010). Study on the longitudinal gas permeability of juvenile wood and mature wood. Special Topics Rev Porous Media 1(1):31–38. doi:10.1615/SpecialTopicsRevPorousMedia.v1.i1.30 (Begell House, inc. publishers)

  • Taghiyari HR, Rangavar H, Farajpour Bibalan O (2011a) Nano-silver in particleboard. BioResources 6(4):4067–4075

    CAS  Google Scholar 

  • Taghiyari HR, Efhami D, Karimi AN, Pourtahmasi K (2011b) Effect of initial spacing on gas permeability of Populus nigra Var. betulifolia. J Trop Forest Sci 23(3):305–310

    Google Scholar 

  • Taghiyari HR, Talaei A, Karimi A (2011c) A correlation between the gas and liquid permeabilities of beech wood heat-treated in hot water and steam mediums. Maderas Ciencia tecnologia 13(3):329–336

    Article  CAS  Google Scholar 

  • Taghiyari HR, Rassam Gh, Lotfinejad Sani Y, Karimi A (2012a) Effects of nano-silver impregnation on some mechanical properties of ice-blasted specimens prepared from two native species. J Trop Forest Sci (JTFS) 24(1):83–88

    Google Scholar 

  • Taghiyari HR, Gholamiyan H, Karimi A (2012b) Effects of heat-treatment on screw and nail withdrawal resistance of nanosilver-impregnated and untreated solid woods. Curr Nanosci 8:637–642

    Article  CAS  Google Scholar 

  • Taghiyari HR, Layeghi M, Aminzadeh Liyafooee F (2012b) Effects of dry ice on gas permeability of nano-silver-impregnated Populus nigra and Fagus orientalis. IET Nanobiotechnology, NBT20110048.3d. doi:10.1049/iet.nbt.2011.0048

  • Taghiyari HR, Enayati A, Gholamiyan H (2012d) Effects of nano-silver impregnation on brittleness, physical and mechanical properties of heat-treated hardwoods. Wood Sci Technol. doi:10.1007/s00226-012-0506-7

  • Taghiyari HR, Rangavar H, Noori P (2012e) Nano-Wollastonite in MDF, Part I: Fire-Retarding Properties. Eur J Wood Prod (Submitted)

  • Valenzuela J, von Leyser E, Pizzi A, Westermeyer C, Gorrini B (2012) Industrial production of pine tannin-bonded particleboard and MDF. Eur J Wood Prod 70(5):735–740

    Article  CAS  Google Scholar 

  • Wegner TH, Jones P (2006) Advancing cellulose-based nanotechnology. Cellulose 13:115–118

    Article  CAS  Google Scholar 

  • Wegner TH, Winandy JE, Ritter MA (2005) Nanotechnology opportunities in residential and non-residential construction. In: 2nd International Symposium on Nanotechnology in Construction, Bilbao, Spain

  • Wisitoraat A, Pimtara I, Phokharatkul D, Jaruwongrangsee K, Tuantranont A (2010) Zinc oxide nanopolypods synthesized by thermal evaporation of carbon nanotubes and zinc oxide mixed powder. Current Nanoscience 6(1):45–53

    Article  Google Scholar 

  • Wodzicki TJ (2001) Natural factors affecting wood structure. Wood SciTechnol 35:5–26

    Article  CAS  Google Scholar 

  • Wu C, Li F, Zhang Y, Wang L, Guo T (2012) Enhanced field emission performance of tetrapod-liked zinc oxide nanoneedles by coating with graphene oxide sheets. Curr Nanosci 8(1):23–25

    Article  CAS  Google Scholar 

  • Yu Y, Jiang Z, Wang G, Tian G, Wang H, Song Y (2012) Surface functionalization of bamboo with nanostructured ZnO. Wood Sci Technol 46:781–790

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is thankful to Mr. Mohammad Aieni, the managing director, and Engin. Mohammad Taghi Kazemi, the production manager, of Sanaye Choobe Khazar Co. (MDF Caspian Khazar, htp://www.choobekhazar.com), for procurement of the necessary fiber and raw materials for the present research project. The technical consultancy of Mr. Younes Sarvari Samadi is also appreciated. I am also grateful to Zydex Industries for preparation of NanoZycosil liquid. Last but not least, we pay our tribute to Mr. Majid Ghazizadeh, the internal sales manager of Pars Chemical Industries Company, for the procurement of the resin for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Taghiyari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taghiyari, H.R. Nano-zycosil in MDF: gas and liquid permeability. Eur. J. Wood Prod. 71, 353–360 (2013). https://doi.org/10.1007/s00107-013-0691-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-013-0691-6

Keywords

Navigation