Skip to main content
Log in

Integrated drying and thermo-hydro-mechanical modification of western hemlock veneer

Thermo-hydromechanische Behandlung von Western Hemlock Furnier mit integrierter Trocknung

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

High moisture content western hemlock veneer was modified using viscoelastic thermal compression (VTC) technology with an integrated drying stage. VTC is a type of thermo-hydro-mechanical treatment. This project determined the influence of five processing parameters on properties of VTC lamina. VTC processing significantly increased the mechanical properties of veneer, which mainly depended on the degree of compression. However, moisture-induced thickness swell increased substantially depending on the degree of compression and venting time. Increasing process temperature increased mass loss. Integrating the drying step improved process efficiency and eliminated drying defects. Process optimization was different depending on the desire to increase mechanical properties or increase dimensional stability. Statistical models were developed to predict properties of VTC treated products and drying time. This project will reduce the cost of VTC technology and provide guidance to design commercial manufacturing processes.

Zusammenfassung

Western Hemlock Furnier mit hohem Feuchtegehalt wurde mittels viskoelastisch-thermischem Verdichtungsverfahren (VTC), eine Art thermo-hydromechanischer Prozess, und mit integrierter Trocknungsstufe behandelt. In dieser Studie wurde der Einfluss von fünf Prozessparametern auf die Eigenschaften von VTC modifizierten Furnieren untersucht. Durch das VTC-Verfahren wurden die mechanischen Eigenschaften von Furnier im Wesentlichen als Folge der Verdichtung signifikant verbessert. Jedoch nahm die feuchtebedingte Dickenquellung in Abhängigkeit des Verdichtungsgrades und der Freisetzungsdauer des Dampfdrucks erheblich zu. Eine Erhöhung der Prozesstemperatur führte zu erhöhtem Masseverlust. Durch Einbindung der Trocknungsstufe konnte die Prozesseffizienz verbessert und Trocknungsfehler ausgeschlossen werden. Prozessoptimierung unterschied sich je nachdem ob die mechanischen Eigenschaften oder die Dimensionsstabilität verbessert werden sollten. Es wurden statistische Modelle zur Vorhersage der Eigenschaften von VTC-behandelten Produkten und der Trocknungszeit entwickelt. Diese Studie senkt die Kosten des VTC-Verfahrens und liefert eine Anleitung zur Entwicklung kommerzieller Produktionsprozesse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3

Similar content being viewed by others

References

  • APA (2009) Voluntary product standard PS-1-09 structural plywood, APA—the engineered wood association. Tacoma, Washington

    Google Scholar 

  • ASTM D 1037-99 (2006) Standard test methods for evaluating properties of wood-based fiber and particle panel materials. American Society for Testing Materials, Philadelphia

  • Bao FC, Jiang ZH, Jiang XM (1998) Comparative studied on wood properties of juvenile vs. mature wood and plantation vs. natural forest of main plantation tree species in china. Scientia Silvae Sinicae 34(2):63–75

    Google Scholar 

  • FAO (2010) Global forest resources assessment. FAO forestry paper 163, food and agriculture. Organization of the United Nations, Rome, p 340

    Google Scholar 

  • Gunduz G, Korkut S, Sevim KD (2008) The effects of heat treatment on physical and technological properties and surface roughness of Camiyanı black pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Bioresour Technol 99(7):2275–2280

    Article  PubMed  Google Scholar 

  • Hernández RE, Pontin M (2006) Shrinkage of three tropical hardwoods below and above the fiber saturation point. Wood Fiber Sci 38(3):474–483

    Google Scholar 

  • Kamke FA (2006) Densified radiata pine for structural composites. Maderas Cienciay tecnología 8(2):83–92

    Google Scholar 

  • Kamke FA, Kutnar A (2010) Transverse compression behavior of wood in saturated steam at 150–170 °C. Wood Fiber Sci 42(3):377–387

    CAS  Google Scholar 

  • Kamke FA, Rathi V (2009) Modified hybrid poplar for structural composites. In: Proceedings of 4th European Conference on wood modification, April 27–29, Stockholm, Sweden, pp 397–400

  • Kamke FA, Rathi VM (2011) Apparatus for viscoelastic thermal compression of wood. Eur J Wood Prod 69(3):483–487

    Article  Google Scholar 

  • Kamke FA, Rautkari L (2009) Modified wood veneer for structural applications. In: Proceedings of 4th International Symposium on Veneer processing and products (ISVPP), May 24–27, Espoo, Finland, pp 207–212

  • Kamke FA, Sizemore H (2008) Viscoelastic thermal compression of wood. US Patent: 7404422. July 29, 2008

  • Korkut S, Guller B (2008) The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood. Bioresour Technol 99(8):2846–2851

    Article  PubMed  CAS  Google Scholar 

  • Korkut S, Akgül M, Dündar T (2008) The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresour Technol 99:1861–1868

    Article  PubMed  CAS  Google Scholar 

  • Kutnar A, Kamke FA (2010) Densified wood for green composites. In: Willems F, Moens P (eds) Green composites: properties, design and life cycle assessment. Nova Science Publishers, Hauppauge, pp 197–204

  • Kutnar A, Kamke FA (2012) Compression of wood under saturated steam, superheated steam, and transient conditions at 150 °C, 160 °C, and 170 °C. Wood Sci Technol 46:73–88

    Article  CAS  Google Scholar 

  • Kutnar A, Kamke FA, Sernek M (2009) Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci Technol 43:57–68

    Article  CAS  Google Scholar 

  • Lv JX (2002) Strengthen the research on plantation wood to reach national goal. China Wood-based Panels 10:3–4

    Google Scholar 

  • Navi P, Sandberg D (2012) Thermo-hydro-mechanical processing of wood. CRC Press, Boca Raton, p 360

    Google Scholar 

  • Raimo A, Kuoppala E, Oesch P (1998) Formation of the main degradation compound groups from wood and its components during pyrolysis. J Anal Appl Pyrol 36(2):137–148

    Google Scholar 

  • SAS Institute (2009) SAS/STAT(R) 9.2 User’s Guide, 2nd ed. SAS Institute Inc., Cary, NC

  • SPSS Institute (2007) SPSS Base 16.0 User’s guide. SPSS Institute Inc., Chicago, IL

  • Stamm J, Seborg RM, Millett MA (1948) Method of forming compressed wood structures. US Patent 2,453,679. November 9, 1948

  • USDA (2010) Wood handbook: wood as an engineering material. Forest products laboratory general technical report. FPL-GTR-113.US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI

Download references

Acknowledgments

The authors are grateful for the funding support from Oregon Built Environment and Sustainable Technology Center, Oregon State University (Corvallis, OR, USA), and the State Scholarship Fund from China Scholarship Council (CSC). Technical assistance from Chuan Li, Josef Weissensteiner, Darrell Lowe, Junhui Zhao, Jesse Paris and Adam Scouse is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangquan Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Kamke, F.A. & Guo, K. Integrated drying and thermo-hydro-mechanical modification of western hemlock veneer. Eur. J. Wood Prod. 71, 173–181 (2013). https://doi.org/10.1007/s00107-012-0660-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-012-0660-5

Keywords

Navigation