Skip to main content
Log in

Study of thermal properties of wood plastic composite reinforced with cellulose micro fibril and nano inorganic fiber filler

Untersuchung der thermischen Eigenschaften von Holz-Kunststoff-Verbundwerkstoffen verstärkt mit Cellulosemikrofibrillen und einem Nanofüllstoff aus anorganischen Fasern

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Wood plastic composite was prepared by mixing wood fibrils into polypropylene with an internal mixer. Nano wollastonite was dispersed in the composite to compensate for the poor thermal characteristics of the product. Thermal properties of the obtained composite were studied by different techniques including thermo gravimetrical analysis, differential scanning calorimetry, limited oxygen index and oxidative induction time. It was found that introduction of nano wollastonite increased thermal stability as well as crystallinity in the composite due to high specific surface area of nano inorganic fiber filler. Also, flammability resistance and the required oxygen content to burn the composite were enhanced as wollastonite was added to the wood plastic composite. However, wollastonite increased oxidation of the sample because it is composed of metal oxides.

Zusammenfassung

Zur Herstellung von Holz-Kunststoff-Verbundwerkstoffen wurden Holzfibrillen mit Polypropylen vermischt. Dem Verbundwerkstoff wurde Nanowollastonit zugegeben, um dessen schlechte thermische Eigenschaften zu verbessern. Die thermischen Eigenschaften des so hergestellten Werkstoffes wurden anhand Thermogravimetrischer Analyse (TGA), Differenzialrasterkalorimetrie (DSC), Sauerstoffminimalwert (LOI) und oxidativer Induktionszeit (OIT) untersucht. Es wurde gezeigt, dass die thermische Stabilität und die Kristallinität im Verbundwerkstoff durch Zugabe von Nano-Wollastonit aufgrund seiner hohen spezifischen Oberfläche verbessert wurden. Zugleich wurden der Entflammbarkeitswiderstand und der zum Verbrennen des Verbundwerkstoffs benötigte Sauerstoffbedarf durch Zugabe von Wollastonit erhöht. Allerdings erhöhte Wollastonit die Oxidation der Prüfkörper, da es aus Metalloxiden besteht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4

Similar content being viewed by others

References

  • Allen NS, Edge M (1992) Fundamentals of polymer degradation and stabilization, 2nd edn. Elsevier Applied Science, London

    Google Scholar 

  • Balkan O, Demirer H, Ezdesir A, Yildirim H, Yilmazer Ü (2007) Effects of SEBS and SEBS-g-MA modifications on the fracture behavior of i-PP/Glass bead and BEAD and i-PP/Wollastonite composites. In: Proceedings of 8th international fracture conference, Istanbul/Turkey, pp 351–360

  • Biagiotti J, Fiori S, Torre L, López-Manchado MA, Kenny JM (2004) Mechanical properties of polypropylene matrix composites reinforced with natural fibers: a statistical approach. Polym Compos 25:26–36

    Article  CAS  Google Scholar 

  • Burnside SD, Giannelis EP (1995) Synthesis and properties of new poly (dimethylsiloxane) nano composite. Polym Mater 7:1597–1600

    CAS  Google Scholar 

  • Caraschi JC, Leao AL (2002) Wood flour as reinforcement of polypropylene. Mater Res 5:405–409

    Article  CAS  Google Scholar 

  • Chen M, Wan C, Shou W, Zhan Y, Zhang Y, Zhang J (2008) Effects of interfacial adhesion on properties of polypropylene/wollastonite composites. J Appl Polym Sci 107:1718–1723

    Article  CAS  Google Scholar 

  • Clemons CM (2002) Wood–plastic composites in the United States: the interfacing of two industries. Forest Prod J 52:10–18

    Google Scholar 

  • Dasari A, Misra RDK (2004) The role of micrometric wollastonite particles on stress whitening behavior of polypropylene compositesm. Acta Materialia 52:1683–1697

    Article  CAS  Google Scholar 

  • Enayati AA, Hosseinaei O, Wang S, Mirshokraie SA, Tajvidi M (2009) Thermal Properties of wood–plastic composites prepared from hemicellulose-extracted wood flour. Iranian J Polym Sci Tech 3:171–181

    Google Scholar 

  • Gao X, Meng X, Wang H, Wen B, Ding Y, Zhang S, Yang M (2008) Antioxidant behaviour of a nanosilica-immobilized antioxidant in polypropylene. J Polym Degrade Stab 93:1467–1471

    Article  CAS  Google Scholar 

  • Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (Clay) nanocomposites. Appl Clay Sci 15:31–49

    Article  CAS  Google Scholar 

  • Ismail H, Edyham MR, Wirjosentono B (2002) Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent. Polym Test 21:139–144

    Article  CAS  Google Scholar 

  • Jahani Y, Ehsani M (2009a) The rheological modification of talc-filled polypropylene by epoxy-polyester hybrid resin and its effect on morphology, crystallinity, and mechanical properties. Polym Eng Sci 49:619–629

    Article  CAS  Google Scholar 

  • Jahani Y, Ehsani M (2009b) The effects of epoxy resin nano particles on shrinkage behavior and thermal stability of talc-filled polypropylene. Polym Bull 63:743–754

    Article  CAS  Google Scholar 

  • Jipa S, Zaharescu T, Supaphol P (2010) Thermal stability of isotactic polypropylene modified with calcium carbonate nanoparticles. Polym Bull 64:783–790

    Article  CAS  Google Scholar 

  • Joseph PV, Rabello MS, Mattoso LHC, Joseph K, Thomas S (2002) Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites. Comp Sci Tech 62:1357–1372

    Article  CAS  Google Scholar 

  • Karger-Kocsis J (1995) Polypropylene: structure, blends and composites. Chapman and Hall, New York

    Book  Google Scholar 

  • Kashiwagi T (1994) Polymer combustion and flammability role of the condensed phase. In: Twenty-fifth international symposium on combustion, The Combustion Institute, pp 1423–1437

  • Kim HS, Yang HS, Kim HJ, Park HJ (2004) Thermal properties of agro-flour-filled biodegradable polymer bio-composites. J Therm Anal Calorim 76:395–404

    Article  CAS  Google Scholar 

  • Kim SW, Lee SH, Kang JS, Kang KH (2006) Thermal conductivity of thermoplastics reinforced with natural fibers. Int J Thermophys 27:1873–1881

    Article  CAS  Google Scholar 

  • Klyosov AA (2007) Wood plastic composites. John Wiley, New Jersey

    Book  Google Scholar 

  • Kokta BV, Raj RG, Daneault C (1991) Use of wood flour as a filler in polypropylene: studies on mechanical properties. Polym Plast Technol Eng 28:609–620

    Google Scholar 

  • Lee SY, Kang IA, Doh GH, Kim WJ, Kim JS, Yoon HG, Wu Q (2008) Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nanocomposites. Express Polym Lett 2:78–87

    Article  CAS  Google Scholar 

  • Lei Y, Wu Q, Clemons CM, Yao F, Xu Y (2007) Influence of nanoclay on property of HDPE/Wood composites. J Appl Polym Sci 106:3958–3966

    Article  CAS  Google Scholar 

  • Luyt AS, Dramicanin MD, Antic Z, Djokovic V (2009) Morphology, mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler. Polym Test 28:348–356

    Article  CAS  Google Scholar 

  • Meng MR, Dou Q (2008) Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Mater Sci Eng, A 492:177–184

    Article  Google Scholar 

  • Mueller DH, Krobjilowski A (2004) Improving the impact strength of natural fiber reinforced composites by specifically designed material and process parameters. Int Nonwovens J 13(4):31–38

    Google Scholar 

  • Ning NY, Yin QJ, Luo F, Zhang Q, Du R, Fu Q (2007) Crystallization behavior and mechanical properties of polypropylene/hallo site composites. Polymer 48:7374–7384

    Article  CAS  Google Scholar 

  • Purohit V, Orzel RA (1988) Polypropylene: a literature review of the thermal decomposition products and toxicity. Int J Toxicol 7:221–242

    Article  CAS  Google Scholar 

  • Qin H, Zhang S, Zhao C, Feng M, Yang M, Shu Z, Yang S (2004) Thermal stability and flammability of polypropylene/montmorillonite composites. Polym Degrad Stab 85:807–813

    Article  CAS  Google Scholar 

  • Rana AK, Mandal A, Mitra BC, Jacobson R, Rowell R, Banerjee AN (1998) Effect of compatibilizer. J Appl Polym Sci 69:329–338

    Article  CAS  Google Scholar 

  • Rl Virta (2007) Wollastonite. US Geological survey minerals yearbook, New York

    Google Scholar 

  • Saujanya C, Tangirala R, Radhakrishnan S (2002) Ctystallization behavior in poly (propylene) containing wollastonite microfibrils. Macromol Mater Eng 287:272–276

    Article  CAS  Google Scholar 

  • Švab I, Musil V, Leskovac M (2005) The adhesion phenomena in polypropylene/wollastonite composites. Acta Chim Slov 52:264–271

    Google Scholar 

  • Švab I, Musil V, Pustak A, Šmit I (2009) Wollastonite-reinforced polypropylene composites modified with novel metallocene EPR copolymers. II. Mechanical properties and adhesion. Polym Compos 30:1091–1097

    Article  Google Scholar 

  • Tajan M, Chaiwutthinan P, Leejarpai T (2008) Thermal and mechanical properties of wood–plastic composites from iron wood flour and recycled polypropylene foam. J Metals Mater Miner 18:53–56

    Google Scholar 

  • Thakur VK, Singha AS (2010) Natural fibers-based polymers: part I: mechanical analysis of Pine needles reinforced biocomposites. Bull Mater Sci 33:257–264

    Article  CAS  Google Scholar 

  • Thiruchitrambalam M, Alavudeen A, Athijayamani A, Venkateshwaran N, Elaya-Perumal A (2009) Improving mechanical properties of banana/kenaf polyester hybrid composite using sodium laulryl sulfate treatment. Mater Phys Mech 8:165–173

    Google Scholar 

  • Winata H, Turng LS, Caulfield DF, Kuster T, Spindler R, Jacobson R (2003) Applications of polyamide/cellulose fiber/wollastonite composites for microcellular injection molding. Antec, Nashville

    Google Scholar 

  • Wirawan R, Zainudin ES, Sapuan SM (2009) Mechanical properties of natural fibre reinforced PVC composites: a review. Sains Malaysiana 38:531–535

    CAS  Google Scholar 

  • Wollerdorfer M, Bader H (1998) Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crops Prod 8:105–112

    Article  CAS  Google Scholar 

  • Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63:305–312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ehsani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhadinejad, Z., Ehsani, M., Khosravian, B. et al. Study of thermal properties of wood plastic composite reinforced with cellulose micro fibril and nano inorganic fiber filler. Eur. J. Wood Prod. 70, 823–828 (2012). https://doi.org/10.1007/s00107-012-0630-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-012-0630-y

Keywords

Navigation