Skip to main content
Log in

Mechanical properties of thermally modified beech timber for structural purposes

Mechanische Eigenschaften von thermisch modifiziertem Buchenholz für tragende Bauteile

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The use of thermally modified timber for structural purposes is of increasing interest. In order to guarantee sufficient reliability in terms of load bearing capacity and fitness for use the strength and stiffness properties of this modified wood have to be assessed. Industrially produced, thermally modified structural timber members made of beech (Fagus sylvatica L.) were subject of the tests presented in this paper. Bending, tension parallel and perpendicular to grain and compression parallel and perpendicular to grain properties were determined. The derived mechanical properties were benchmarked to the European EN 338 strength class system for structural timber. It turned out that the used strong thermal treatment of the raw material resulted in a significant reduction of most of the strength properties. However, stiffness properties were not affected. In particular the strength properties perpendicular to grain suffered a lot due to the thermal modification whereas compression strength parallel to grain was unchanged. The main drawbacks found along the experiments were a pronounced brittle behaviour of the specimens and big variations in strength. For the determination of strength values it is proposed not to use correlations as provided in European standards but to test and state these properties discretely. On the basis of these results a general use of strongly thermally modified beech as structural timber cannot be recommended. However, for selected purposes, like e.g., for structural façade elements or for columns, the use of this material might be an option.

Zusammenfassung

Die Verwendung von thermisch modifiziertem Holz erfreut sich wachsender Beliebtheit. Für eine Erweiterung der möglichen Anwendungen auf tragende Bauteile müssen deren Festigkeits- und Steifigkeitseigenschaften bekannt sein. Industriell thermisch behandeltes Buchenholz (Fagus sylvatica L.) in Bauteilabmessungen wurde Biege-, Zug- und Druckversuchen parallel und senkrecht zur Faser unterzogen. Die ermittelten Parameter wurden den Festigkeitsklassen nach EN 338 zugeordnet. Es zeigte sich, dass die verwendete intensive thermische Modifikation zu einer signifikanten Reduktion der Festigkeitseigenschaften führte, während die Steifigkeiten mehr oder weniger unverändert blieben. Besonders betroffen von der Reduktion der Werte waren die Festigkeiten senkrecht zur Faser des thermisch behandelten Holzes. Als großes Manko des Materials erwies sich während der Versuche das spröde Bruchverhalten sowie die große Streuung der Festigkeitswerte. Auf der Basis der Resultate kann das verwendete stark thermisch modifizierte Buchenholz nicht für eine generelle Verwendung in tragenden Bauteilen empfohlen werden. Für spezielle Anwendungen, beispielsweise Stützen oder Fassadenelemente, könnte der Einsatz dieses Materials jedoch eine Option sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7

Similar content being viewed by others

References

  • Bekhta P, Niemz P (2005) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5):539–546

    Google Scholar 

  • Boonstra MJ, Van Acker J, Tjeerdsma BF, Kegel EV (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann For Sci 64:679–690

    Article  Google Scholar 

  • Burmester A (1975) Dimensional stabilization of wood. Holz Roh- Werkst 33(9):333–335

    Article  CAS  Google Scholar 

  • Chang CI, Keith CT (1978) Properties of heat-darkened wood: II. Mechanical properties and gluability. Report, Eastern Forest Products Laboratory, Ottawa, Canada

  • CEN ECfS (2002) EN 13183-1: Moisture content of a piece of sawn timber—part 1: Determination by oven dry method

  • CEN ECfS (2004) EN 302-3: Adhesives for load-bearing timber structures—test methods—part 3: determination of the effect of acid damage to wood fibres by temperature and humidity cycling on the transverse tensile strength

  • CEN ECfS (2009) EN 338: Structural timber—strength classes

  • CEN ECfS (2010a) EN 384: Structural timber—determination of characteristic values of mechanical properties and density

  • CEN ECfS (2010b) EN 408: Timber structures—structural timber and glued laminated timber—determination of some physical and mechanical properties

  • CEN ECfS (2010c) EN 1912 + A4: Structural timber—strength classes—assignment of visual grades and species

  • Finnish-Thermowood-Association (2003) Thermowood handbook. Finnish Thermowood Association, Helsinki

  • Frese M, Blass HJ (2007) Characteristic bending strength of beech glulam. Mater Struct 40(1):3–13

    Article  CAS  Google Scholar 

  • DIN GIfS (2008) DIN 4074-5 Strength grading of wood—part 5: Sawn hard wood

  • Hakkou M, Pétrissans M, Gérardin P, Zoulalian A (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stabil 91(2):393–397

    Article  CAS  Google Scholar 

  • Hill CAS (2006) Wood modification: chemical, thermal and other processes renewable resources. Wiley, Southern Gate

    Book  Google Scholar 

  • Hillis WE (1984) High-temperature and chemical effects on wood stability. 1. General considerations. Wood Sci Technol 18(4):281–293

    Article  CAS  Google Scholar 

  • ISO IOfS (1975) ISO 3131: Wood; determination of density for physical and mechanical tests

  • Johansson D, Morén T (2006) The potential of colour measurement for strength prediction of thermally treated wood. Holz Roh- Werkst 64(2):104–110

    Article  Google Scholar 

  • Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Holz Roh- Werkst 60(1):1–6

    Article  CAS  Google Scholar 

  • Kollmann F, Schneider A (1963) On the sorption behaviour of heat stabilized wood. Holz Roh- Werkst 21(3):77–85

    Article  Google Scholar 

  • Leijten AJM (2004) Heat treated wood and the influence on the impact bending strength. Heron 49(4):349

    Google Scholar 

  • Majano–Majano A, Hughes M, Fernandez-Cabo JL (2010) The fracture toughness and properties of thermally modified beech and ash at different moisture contents. Wood Sci Technol 46(1):5–21

    Article  Google Scholar 

  • Millett MA, Gerhards GC (1972) Accelerated aging: residual weight and flexural properties of wood heated in air at 115 °C to 175 °C. Wood Sci 4(4):193–201

    Google Scholar 

  • Mitteramskogler (2007) Esche, Buche und Eiche mit Hitze veredelt Mehr Wertschöpfung aus heimischen Wäldern

  • Mitteramskogler (2008) Mirako-thermowood

  • NIST: National Institute of Standards and Technology (2010) Percentile. In: Engineering statistics handbook

  • Pollmeier (2009) Pollmeier grading beech. Creuzburg, Germany

  • Ravenshorst GJP, van de Kuilen JWG (2009) Relationship between local, global and dynamic modulus of elasticity for soft- and hardwoods. In: CIB-W18, meeting 42, paper 42-10-1, Duebendorf, Switzerland

  • Rusche H (1973a) Thermal-degradation of wood at temperatures up to 200 °C. 1. Strength properties of dried wood after heat-treatment. Holz Roh- Werkst 31(7):273–281

    Article  CAS  Google Scholar 

  • Rusche H (1973b) Thermal degradation of wood at temperatures up to 200 °C. 2. Reaction-kinetics of loss of mass during heat-treatment of wood. Holz Roh- Werkst 31(8):307–312

    Article  CAS  Google Scholar 

  • Schneider A (1971) Investigations on the influence of heat treatments within a range of temperature from 100 °C to 200 °C on the modulus of elaticity, maximum crushing strength and impact work of pine sapwood and beechwood. Holz Roh- Werkst 29(11):431–440

    Article  Google Scholar 

  • Schöftner R (2007) Holiwood—international research and development for innovative products made out of thermal modified timber. Paper presented at the 3rd European Conference on Wood Modification, Cardiff, UK

  • Seborg RM, Tarkow H, Stamm AJ (1953) Effect of heat upon the dimensional stabilisation of wood. For Prod J 3(9):59–67

    CAS  Google Scholar 

  • Sell J (1997) Properties and characteristic values of wood species (in German). LIGNUM, Zürich

    Google Scholar 

  • Wood handbook (1999). Forest Products Laboratory General Technical Report FPL-GTR-113

  • Yixing L, Jian L, Jinman W, Jinsong Y, Yanhua M (1994) The effect of heat treatment on different species wood colour. J For Res 5(4):73–78

    Google Scholar 

Download references

Acknowledgments

The presented work was financially supported by the European Commission under contract No. NMP2-CT-2005-011799 (HOLIWOOD project). The authors would like to thank Mitteramskogler GmbH for the supply of the material and the technical staff of Empa for the support in test preparation and execution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Widmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widmann, R., Fernandez-Cabo, J.L. & Steiger, R. Mechanical properties of thermally modified beech timber for structural purposes. Eur. J. Wood Prod. 70, 775–784 (2012). https://doi.org/10.1007/s00107-012-0615-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-012-0615-x

Keywords

Navigation