Skip to main content
Log in

Thermodynamic characteristics of surface densified solid Scots pine wood

Thermodynamische Eigenschaften von oberflächenverdichtetem Kiefernmassivholz

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Wetting phenomena of surface densified solid wood and its surface energetic behavior were investigated. The specimens of three different initial thicknesses (22 mm, 20 mm, and 18 mm) were surface densified to a target thickness of 15 mm in order to obtain three different degrees of surface densification. After surface densification one third of the specimens was heat treated at 200 °C in the presence of steam, and one third of the specimens was oil treated with linseed oil. The sessile drop technique was used to estimate the apparent contact angle of water, diiodomethane, and formamide on control and surface densified wood. The contact angle data were used to determine the surface free energies of the control and surface densified wood by the Owens Wendt Rabel and Kaelble (OWRK) method. The results of contact angle measurements revealed that surface densification process affects surface wettability. The apparent contact angles of test liquids were higher in the case of surface densified wood compared to the control undensified wood. Heat treatment and oil treatment of the surface densified wood additionally increased the contact angle of tested liquids. Furthermore, a larger reduction in the void spaces of the wood due to higher degree of densification did not affect the apparent contact angles of tested liquids and consequently the surface free energy. The surface densification process lowered the surface energetics and the polarity of wood. Furthermore, heat treatment and oil treatment additionally increased the hydrophobic character of the examined surfaces and lowered the dispersive and polar components of surface free energy.

Zusammenfassung

Untersucht wurde das Benetzungsverhalten von oberflächenverdichtetem Massivholz sowie dessen oberflächenenergetische Eigenschaften. Prüfkörper mit den drei Ausgangsdicken 22 mm, 20 mm und 18 mm wurden auf eine Solldicke von 15 mm verdichtet, um drei verschiedene Verdichtungsgrade zu erhalten. Anschließend wurde ein Drittel der Prüfkörper bei einer Temperatur von 200 °C und in Dampfatmosphäre hitzebehandelt und ein Drittel der Prüfkörper wurde mit Leinöl behandelt. Mit dem Verfahren des ruhenden Tropfens wurde der statische Kontaktwinkel von Wasser, von Diiodmethan sowie von Formamid auf den Kontrollprüfkörpern und den oberflächenverdichteten Proben bestimmt. Aus den Ergebnissen wurden die freie Oberflächenenergie der Kontrollprüfkörper und der oberflächenverdichteten Proben nach dem Verfahren von Owens, Wendt, Rabel und Kaelble (OWRK) bestimmt. Die Ergebnisse der Kontaktwinkelmessung zeigten, dass die Oberflächenverdichtung einen Einfluss auf die Oberflächenbenetzbarkeit hat. Die statischen Kontaktwinkel der verwendeten Flüssigkeiten waren bei oberflächenverdichtetem Holz höher als bei unverdichtetem Holz. Eine Hitze- und Ölbehandlung von oberflächenverdichtetem Holz hatte eine weitere Zunahme des Kontaktwinkels zur Folge. Außerdem hatte eine stärkere Reduzierung der Hohlräume im Holz aufgrund eines höheren Verdichtungsgrades keinen Einfluss auf die statischen Kontaktwinkel der Prüfflüssigkeiten und damit auf die freie Oberflächenenergie. Die Oberflächenverdichtung reduzierte die oberflächenenergetischen Eigenschaften und die Polarität von Holz. Durch die Hitze- und Ölbehandlung nahm der hydrophobe Charakter der untersuchten Oberflächen zu und die dispersen und polaren Anteile der freien Oberflächenenergie nahmen ab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1

Similar content being viewed by others

References

  • Blomberg J, Persson B (2004) Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris) during densification with the CaLignum process. J Wood Sci 50(4):307–314

    Article  Google Scholar 

  • Bryne LE, Lausmaa J, Ernstsson M, Englund F, Walinder MEP (2010) Ageing of modified wood. Part 2: Determination of surface composition of acetylated, furfurylated, and thermally modified wood by XPS and ToF-SIMS. Holzforschung 64:305–313

    Article  CAS  Google Scholar 

  • De Meijer M, Haemers S, Cobben W, Militz H (2000) Surface energy determination of wood: comparison of methods and wood species. Langmuir 16(24):9352–9359

    Article  Google Scholar 

  • Dwianto W, Morooka T, Norimoto M, Kitajima T (1999) Stress relaxation of Sugi (Cryptomeria japonica D. Don) wood in radial compression under high temperature steam. Holzforschung 53(5):541–546

    Article  CAS  Google Scholar 

  • Epmeier H, Westin M, Rapp AO (2004) Differently modified wood: comparison of some selected properties. Scand J For Res 19:31–37

    Article  Google Scholar 

  • Follrich J, Müller U, Gindl W (2006) Effects of thermal modification on the adhesion between spruce wood (Picea abies Karst.) and a thermoplastic polymer. Holz Roh- Werkst 64:373–376

    Article  CAS  Google Scholar 

  • Gardner DJ, Generalla NC, Gunnells DW, Wolcott MP (1991) Dynamic wettability of wood. Langmuir 7(11):2498–2502

    Article  CAS  Google Scholar 

  • Gardner DJ (1996) Aplication of the Lifshitz-van der Waals acid-base approach to determine wood surface tension components. Wood Fiber Sci 28(4):422–428

    CAS  Google Scholar 

  • Gérardin P, Petrič M, Petrissans M, Lambert J, Ehrhrardt JJ (2007) Evolution of wood surface free energy after heat treatment. Polym Degrad Stab 92:653–657

    Article  Google Scholar 

  • Gindl M, Reiterer A, Sinn G, Stanzl-Tschegg SE (2004) Effects of surface ageing on wettability, surface chemistry, and adhesion of wood. Holz Roh- Werkst 62:273–280

    Article  CAS  Google Scholar 

  • Gunnells DW, Gardner DJ, Wolcott MP (1994) Temperature dependence of wood surface energy. Wood Fiber Sci 26(4):447–455

    CAS  Google Scholar 

  • Hakkou M, Petrissans M, Zoulalian A, Gérardin P (2005) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stab 89:1–5

    Article  CAS  Google Scholar 

  • Hamdan S, Dwianto W, Morooka T, Norimoto M (2000) Softening characteristics of wet wood under quasi static loading. Holzforschung 54:557–560

    Article  CAS  Google Scholar 

  • Inoue M, Norimoto M, Tanahashi M, Rowell RM (1993) Steam or heat fixation of compressed wood. Wood Fiber Sci 25(3):224–235

    CAS  Google Scholar 

  • Jennings JD, Zink-Sharp A, Frazier CE, Kamke FA (2006) Properties of compression-densified wood, Part II: surface energy. J Adhes Sci Technol 20(4):335–344

    Article  CAS  Google Scholar 

  • Kamke FA, Sizemore H (2008) Viscoelastic thermal compression of wood. US Patent Application No 7.404.422

  • Kocaefe D, Poncsak S, Doŕe G, Younsi R (2008) Effect of heat treatment on the wettability of white ash and soft maple by water. Holz Roh- Werkst 66:355–361

    Article  CAS  Google Scholar 

  • Kutnar A, Kamke FA, Petrič M, Sernek M (2008) The influence of viscoelastic thermal compression on the chemistry and surface energetics of wood. Colloids Surf A, Physicochem Eng Asp 329:82–86

    Article  CAS  Google Scholar 

  • Mantanis GI, Young RA (1997) Wetting of wood. Wood Sci Technol 31:339–353

    CAS  Google Scholar 

  • Mohammed-Ziegler I, Hórvölgyi Z, Tóth A, Forsling W, Holmgren A (2006) Wettability and spectroscopic characterization of silylated wood samples. Polym Adv Technol 17:932–939

    Article  CAS  Google Scholar 

  • Navi P, Girardet F (2000) Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54(3):287–293

    Article  CAS  Google Scholar 

  • Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  • Petrissans M, Gérardin P, El bakali I, Serraj M (2003) Wettability of heat-treated wood. Holzforschung 57:301–307

    Article  CAS  Google Scholar 

  • Rautkari L, Hughes M (2009) Eliminating set-recovery in densified wood using a steam heat-treatment process. In: Proceedings of the 4th European conference on wood modification, Stockholm, Sweden

    Google Scholar 

  • Rautkari L, Properzi M, Pichelin F, Hughes M (2010) Properties and set-recovery of surface densified Norway spruce and European beech. Wood Sci Technol 44:679–691

    Article  CAS  Google Scholar 

  • Rautkari L, Laine K, Laflin N, Hughes M (2011) Surface modification of Scots pine: the effect of process parameters on the through thickness density profile. J Mater Sci. doi:10.1007/s10853-011-5388-9

    Google Scholar 

  • Scheikl M, Dunky M (1998) Measurement of dynamic and static contact angles on wood for the determination of its surface tension and the penetration of liquids into the wood surface. Holzforschung 52:89–94

    Article  CAS  Google Scholar 

  • Seborg RM, Millet MA, Stamm AJ (1945) Heat-stabilized compressed wood. Staypak. Mech Eng 67:25–31

    Google Scholar 

  • Sernek M, Kamke FA, Glasser WG (2004) Comparative analysis of inactivated wood surface. Holzforschung 58:22–31

    Article  CAS  Google Scholar 

  • Sulaiman O, Hashim R, Subari K, Liang CK (2009) Effect of sanding on surface roughness of rubberwood. J Mater Process Technol 209:3949–3955

    Article  Google Scholar 

  • Sun Z, Guanben DU, Huang L (2009) Effect of microwave plasma treatment on surface wettability of common teak wood. Front For China 4(2):249–254

    Article  Google Scholar 

  • Walinder MEP, Johansson I (2001) Measurement of wood wettability by Wilhelmy method. Part 1. Holzforschung 55(1):21–32

    CAS  Google Scholar 

  • Wolkenhauer A, Avramidis G, Militz H, Viöl W (2008) Plasma treatment of heat treated beech wood—investigation on surface free energy. Holzforschung 62:472–474

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the COST Action FP0904 for financial support within the frame of Short Term Scientific Mission and Miss Cara Leitch for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreja Kutnar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutnar, A., Rautkari, L., Laine, K. et al. Thermodynamic characteristics of surface densified solid Scots pine wood. Eur. J. Wood Prod. 70, 727–734 (2012). https://doi.org/10.1007/s00107-012-0609-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-012-0609-8

Keywords

Navigation