Advertisement

European Journal of Wood and Wood Products

, Volume 70, Issue 5, pp 671–677 | Cite as

Tool recession in the processing of window scantling with innovative core materials

  • Ali Fathollahzadeh
  • Frieder ScholzEmail author
  • Thomas Keller
Originals Originalarbeiten
  • 140 Downloads

Abstract

Three layer laminated lumber is extensively used in the manufacture of window frames. The insulating capacity is an important factor. Some producers are trying to expand the market and have introduced novel scantlings with higher insulating capacities into the market. The core layer of these scantlings was replaced by new materials. The three types are pressed cork, Polyurethane and Purenit. In this study the wear effects of wood scantling with new core layers on the recession of blades was studied. Four different types of tungsten carbide blades with different grain sizes (normal, fine, super fine and diamond coated) were used. Results show that Purenit is the most abrasive material for blades. The glue line is also a source of destruction for blades. The authors suggest that super fine coated blade is the best type for machining wood-Purenit scantling. The two other scantlings can be machined with normal grain coated carbide blade without difficulties.

Keywords

Polyurethane Tool Wear Tungsten Carbide Core Layer Vanadium Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Schneidenverscheiß neuartiger Isoliermaterialien für Fensterkantel

Zusammenfassung

3-lagige Schichthölzer werden häufig bei der Herstellung von Fensterrahmen verwendet. Dabei spielt das Isoliervermögen eine wichtige Rolle. Einige Hersteller versuchen Fensterrahmen mit höheren Isolationseigenschaften auf dem Markt zu etablieren. Dabei wurde die Kernschicht der verleimten Fensterkantel durch neue Materialien ersetzt. Die drei verwendeten Isolationsmaterialien sind Kork, Polyurethan und Purenit. In dieser Studie wurde der Werkzeugverschleiß bei der Bearbeitung von solchen Holzrahmen mit einer neuen Kernschicht untersucht. Dabei wurden vier verschiedene Hartmetallschneiden (Normal, Fein, Superfein und Diamantbeschichtet) betrachtet. Die Ergebnisse zeigen, dass die Klebefuge, die die Holzlagen mit der Isolationsschicht verklebt, den größten Verschleiß am Werkzeug verursacht. Von den verwendeten Isolationsmaterialien ist Purenit das abrasivste Material. Von den getesteten Werkzeugen erwies sich Super Fine als am Besten geeignet für die Bearbeitung von Purenit. Die Kanteln mit der Kork- bzw. Polyurethanschicht verursachten nur geringen Verschleiß am Werkzeug.

References

  1. Bayoumi AE, Stewart JS, Bailey JA (1988) The effects of cemented carbide binder composition on tool wear encountered in surfacing green lumber. Wood Fiber Sci 20(4):457–476 Google Scholar
  2. Brooks RD (1951) Care and maintenance of carbide wood working tools. J For Prod Res Soc 1(1):57–60 Google Scholar
  3. Bustos CA, Moya CL, Lisperguer JM, Viveros EM (2010) Effect of knife wear on the glue ability of planed surfaces of radiate pine. Wood Fiber Sci 42(2):185–191 Google Scholar
  4. Crump H (1948) Maintenance and operating practices for tungsten carbide tools. J For Prod Res Soc 2:201–214 Google Scholar
  5. Duff KW (1958) Carbide wood cutting tools. For Prod J 8(5):33A–36A Google Scholar
  6. Gisip J, Gazo R, Stewart HA (2007) Effects of refrigerated air on tool wear. Wood Fiber Sci 39(3):443–449 Google Scholar
  7. ift Rosenheim (2008) Holzbau der Zukunft. In: Teilprojekt 20 Konstruktionsgrundlagen für Fenster-, Türen- und Fassadenelemente aus Verbundwerkstoffen und Holz–Teil 2. Bayerische Staatsministerium für Wissenschaft, Forschung und Kunst im Rahmen der High Tech Offensive Bayern Google Scholar
  8. Kalish HS (1973) Some plain talk about carbides. Manuf Eng Manage 71(1):28–31 Google Scholar
  9. Kirbach E, Chow S (1976) Chemical wear of tungsten carbide cutting tools by western red cedar. For Prod J 26(3):44–48 Google Scholar
  10. Klamecki BE (1979) A review of wood cutting tool wear literature. Holz Roh- Werkst 37(7):265–276 CrossRefGoogle Scholar
  11. Maier G (2000) Holzspanungslehre und werkzeugtechnische Grundlagen. Vogel publication, Würzburg, pp 110–115. ISBN:3-8023-1822-6 Google Scholar
  12. Reid AS, Stewart HA, Papp RA (1991) High-temperature reactions of tungsten carbide-cobalt tool material with MDF. Forest Prod J Vol. 41, No. 11/12 Google Scholar
  13. Sellers T Jr, Miller GD, Nieh Li-Shih W (1990) Evaluation of three fillers in PF adhesives used to bond intermediate moisture content plywood: glueline durability and knife wear. For Prod J 40(10):23–28 Google Scholar
  14. Sellers T Jr (1989) Knife wear due to filler type in plywood adhesives. For Prod J 39(4):39–41 Google Scholar
  15. Sellers T Jr, Miller GD, Smith W (2005) Tool wear properties of five extender/fillers in adhesive mixes for plywood. For Prod J 55(3):27–31 Google Scholar
  16. Stewart HA, Shatynski SK, Harbison B, Rabin B (1986) High-temperature corrosion of tungsten carbide from machining medium-density fiberboard. Carbide Tool J, 18(1):2–7 Google Scholar
  17. Stewart HA (1989) Feasible high-temperature phenomena in tool wear from wood machining. For Prod J 39(3):25–28 Google Scholar
  18. Weill TC (1958) Cemented tungsten carbides and their application to the woodworking field. For Prod J 8(6):21A–24A Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ali Fathollahzadeh
    • 1
  • Frieder Scholz
    • 2
    Email author
  • Thomas Keller
    • 2
  1. 1.Department of Wood Sciences and Technology, Faculty of Natural ResourcesUniversity of TehranTehranIran
  2. 2.Faculty of Wood TechnologyUniversity of Applied Sciences RosenheimRosenheimGermany

Personalised recommendations