Advertisement

European Journal of Wood and Wood Products

, Volume 70, Issue 5, pp 679–688 | Cite as

Influence of ageing on mechanical properties of wood to wood bonding with wheat flour glue

  • Stefano D’AmicoEmail author
  • Marta Hrabalova
  • Ulrich Müller
  • Emmerich Berghofer
Originals Originalarbeiten

Abstract

Earlier research into native wheat flour for wood to wood bonding showed excellent bonding properties comparable to synthetic adhesives, but no data about ageing behaviour is available. Short and long term effects on mechanical properties were analysed by lap joint testing and modified DCB-specimens. Results showed no significant reduction in bonding properties, but a trend to lower adhesive strength after 12 months of storage was noticeable. Changes in wheat polymers were observed by means of DSC and FTIR-ATR. Soluble degradation products of starch were analysed by GC-FID after methanolysis and derivatisation. FTIR measurements indicated changes in the structure of starch, but no appreciable alteration of proteins. Investigations by DSC showed increasing crystallinity during 3 months of storage. After 6 months more degradation products were detected. Results indicated that hydrolysis of starch is responsible for a moderate decrease of bonding performance; wheat proteins seem to be less affected.

Keywords

Starch Shear Strength Fracture Energy Wheat Flour Retrogradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

DCB

double cantilever beam

DSC

differential scanning calorimetry

FF

furfural

HMF

5-(Hydroxymethyl)furfural

GC

gas chromatography

FID

flame ionization detector

ATR

attenuated total reflectance

FTIR

Fourier transform infrared spectroscopy

PCA

principal component analysis

Einfluss der Alterung auf die mechanischen Eigenschaften von Weizenmehlleim für die Verklebung von Holz

Zusammenfassung

Frühere Untersuchungen mit unbehandeltem Weizenmehl für die Verklebung von Holz zeigten sehr gute Festigkeiten vergleichbar mit synthetischen Klebstoffen, aber es sind keine Informationen über das Alterungsverhalten bekannt. Kurz- und Langzeiteffekte wurden mittels Längszugscher- und modifzierten DCB-Proben untersucht. Die Ergebnisse zeigten keine signifikante Verschlechterung der Verklebungsfestigkeit nach 12 Monaten, aber eine Tendenz zu geringeren Festigkeiten war erkennbar. Veränderungen in den Polymeren im Weizenmehl wurden mit Hilfe von DSC und FTIR analysiert. Die FTIR Messungen zeigten Strukturveränderungen der Stärke, aber keine sichtlichen Veränderungen der Proteine. Untersuchungen mittels DSC ergaben, dass die Kristallinität der Stärke während den ersten drei Monaten anstieg. Nach 6 Monaten wurden immer mehr Abbauprodukte der Stärke gemessen. Die Ergebnisse lassen den Rückschluss zu, dass die Hydrolyse der Stärke für den moderaten Verlust der Festigkeiten verantwortlich ist, während die Proteine weitaus weniger von der Lagerung beeinflusst werden.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support by the Competence Centre for Wood Composites and Wood Chemistry, Wood K plus. We also like to express our thanks to Holzindustrie Schweighofer GmbH and Austrian Science Fund (FWF) (Project no. L319-B16) for supplying the research on renewable wood-starch composites.

References

  1. Ameur LA, Trystram G, Birlouez-Aragon I (2006) Accumulation of 5-hydroxymethyl-2-furfural in cookies during the backing process: Validation of an extraction method. Food Chem 98(4):790–796 CrossRefGoogle Scholar
  2. Baik MY, Chinachoti P (2000) Moisture redistribution and phase transitions during bread staling. Cereal Chem 77(4):484–488 CrossRefGoogle Scholar
  3. Chheda JN, Romàn-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342–350 CrossRefGoogle Scholar
  4. Cocchi M, Foca G, Marchetti A, Sighinolfi S, Tassi L, Ulrici A (2005) Use of multivariate analysis of MIR spectra to study bread staling. Ann Chim 95(9–10):657–666 PubMedCrossRefGoogle Scholar
  5. D’Amico S, Hrabalova M, Müller U, Berghofer E (2010) Bonding of spruce wood with wheat flour glue—Effect of press temperature on the adhesive bond strength. Ind Crop Prod 31(2):255–260 CrossRefGoogle Scholar
  6. Däumling C, Brenske KR, Wilke O, Horn W, Jann O (2005) Health-related evaluation procedure of VOC and SVOC emissions from building products—A contribution to the European construction products directive. Gefahrst Reinhalt Luft 65(3):90–92 Google Scholar
  7. Del Nobile MA, Martoriello T, Mocci G, La Notte E (2003) Modeling the starch retrogradation kinetic of durum wheat bread. J Food Eng 59(2–3):123–128 CrossRefGoogle Scholar
  8. Dix B (1987) Bonding veneer plywood with modified diisocyanates. Holz Roh- Werkst 45(12):487–494 CrossRefGoogle Scholar
  9. EN 302-1 (2004) Klebstoffe für tragende Holzbauteile—Prüfverfahren—Teil 1: Bestimmung der Längszugscherfestigkeit. Österreichisches Normungsinstitut, Wien Google Scholar
  10. Follrich J, Stöckel F, Konnerth J (2010) Macro- and micromechanical characterization of wood-adhesive bonds exposed to alternating climate conditions. Holzforschung 64(6):705–711 CrossRefGoogle Scholar
  11. Kizil R, Irudayaraj J, Seetharaman K (2002) Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem 50(14):3912–3918 PubMedCrossRefGoogle Scholar
  12. Konnerth J, Gindl W, Harm M, Müller U (2006) Comparing dry bond strength of spruce and beech wood glued with different adhesives by means of scarf- and lap joint testing method. Holz Roh- Werkst 64(4):269–271 CrossRefGoogle Scholar
  13. Kuutti L, Peltonen J, Myllärinen P, Teleman O, Forssell P (1998) AFM in studies of thermoplastic starches during ageing. Carbohydr Polym 37(1):7–12 CrossRefGoogle Scholar
  14. Imam SH, Mao LJ, Chen L, Greene RV (1999) Wood adhesive from crosslinked poly(vinyl alcohol) and partially gelatinized starch: Preparation and properties. Starch - Stärke 51(6):225–229 CrossRefGoogle Scholar
  15. Ji Y, Zhu K, Qian H, Zhou H (2007) Staling of cake prepared from rice flour and sticky rice flour. Food Chem 104(1):53–58 CrossRefGoogle Scholar
  16. Lavisci P, Pizzo B, Gagliano JM, Triboulot P, De Ciechi M (2003) Fracture energy testing of thick joints with structural wood adhesives. Holz Roh- Werkst 61(5):355–357 CrossRefGoogle Scholar
  17. Li W, Dobraszczyk BJ, Dias A, Gil AM (2006) Polymer conformation structure of wheat proteins and gluten subfractions revealed by ATR-FTIR. Cereal Chem 83(4):407–410 CrossRefGoogle Scholar
  18. Lionetto F, Maffezzoli A, Ottenhof MA, Farhat IA, Mitchell JR (2005) The retrogradation of concentrated wheat starch systems. Starch - Stärke 57(1):16–24 CrossRefGoogle Scholar
  19. Livings SJ, Breach C, Donald AM, Smith AC (1997) Physical ageing of wheat flour-based confectionery wafers. Carbohydr Polym 34(4):347–355 CrossRefGoogle Scholar
  20. Liu H, Yu L, Tong Z, Chen L (2010) Retrogradation of waxy cornstarch studied by DSC. Starch - Stärke 62(10):524–529 CrossRefGoogle Scholar
  21. Lu TJ, Jane JL, Keeling PL (1997) Temperature effect on retrogradation rate and crystalline structure of amylose. Carbohydr Polym 33(1):19–26 CrossRefGoogle Scholar
  22. Miles MJ, Morris VJ, Ring SG (1984) Some recent observations on the retrogradation of amylose. Carbohydr Polym 4(1):73–77 CrossRefGoogle Scholar
  23. Moubarik A, Pizzi A, Allal A, Charrier F, Khoukh A, Charrier B (2010) Cornstarch-mimosa tannin-urea formaldehyde resins as adhesives in the particleboard production. Starch - Stärke 62(3–4):131–138 CrossRefGoogle Scholar
  24. Nagamori M, Funazukuri T (2004) Glucose production by hydrolysis of starch under hydrothermal conditions. J Chem Technol Biotechnol 79:229–233 CrossRefGoogle Scholar
  25. Plath L (1972) Role of starch products in gluing of wood materials by synthetic resin adhesives. Starch - Stärke 24(9):306–309 CrossRefGoogle Scholar
  26. Qi W, Zhang SP, Xu QL, Ren ZW, Yan YJ (2008) Degradation kinetics of xylose and glucose in hydrolysate containing dilute sulfuric acid. Chin J Process Eng 8(6):1132–1137 Google Scholar
  27. Ramis X, Cadenato A, Salla JM, Morancho JM, Vallés A, Contat L, Ribes A (2004) Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polym Degrad Stab 86(3):483–491 CrossRefGoogle Scholar
  28. Reimerdes EH, Rothkitt KD (1984) Qualitative and quantitative analysis of carbohydrates in food. Fresenius J Anal Chem 318(3-4):220–224 CrossRefGoogle Scholar
  29. Sevenou O, Hill SE, Farhat IA, Mitchell JR (2002) Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol 31(1–3):79–85 PubMedCrossRefGoogle Scholar
  30. Ters T, Follrich J, Hinterstoisser B (2011) Artificially ageing of softwood and its effects on mechanical properties and chemistry. Wood Mater Sci Eng 6:58–68 CrossRefGoogle Scholar
  31. Tjeerdsma B, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh- Werkst 56(3):149–153 CrossRefGoogle Scholar
  32. Tondi G, Wieland S, Wimmer T, Schnabel T, Petutschnigg A (2011) Starch-sugar synergy in wood adhesion science: basic studies and particleboard production. Eur J Wood Prod. doi: 10.1007/s00107-011-0553-z Google Scholar
  33. van Soest JJG, Tournois H, de Wit D, Vliegenthart JFG (1995) Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res 279:201–214 CrossRefGoogle Scholar
  34. Veigel S, Follrich J, Gindl-Altmutter W, Müller U (2011) Comparison of fracture energy testing by means of double cantilever beam-(DCB)-specimens and lap joint testing method for the characterization of adhesively bonded wood. Eur J Wood Prod. doi: 10.1007/s00107-010-0499-6 Google Scholar
  35. Wang X, Choi SG, Kerr WL (2004) Effect of gluten content on recrystallisation kinetics and water mobility in wheat starch gels. J Sci Food Agric 84(4):371–379 CrossRefGoogle Scholar
  36. Zhang X, Gozukara Y, Sangwan P, Gao D, Bateman S (2010) Biodegradation of chemically modified wheat gluten-based natural polymer materials. Polym Degrad Stab 95(12):2309–2317 CrossRefGoogle Scholar
  37. Zhou YG, Li D, Wang LJ, Li Y, Yang BN, Bhandari B, Chen XD, Mao ZH (2009) Effect of water content on thermal behaviors of common buckwheat flour and starch. J Food Eng 93(2):242–248 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Stefano D’Amico
    • 1
    • 2
    • 3
    Email author
  • Marta Hrabalova
    • 4
  • Ulrich Müller
    • 1
  • Emmerich Berghofer
    • 5
  1. 1.Competence Center for Wood Composites and Wood Chemistry (Wood K plus)LinzAustria
  2. 2.Competence Center for Wood Composites and Wood Chemistry (Wood K plus)LinzAustria
  3. 3.Universität für Bodenkultur, UFT—Universitäts- u. Forschungszentrum TullnTullnAustria
  4. 4.Institute for Natural Materials Technology, Department of Agrobiotechnology, IFA-TullnUniversity of Natural Resources and Applied Life SciencesTullnAustria
  5. 5.Institute of Food Technology, Department of Food Science and TechnologyUniversity of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations