Skip to main content

Advertisement

Log in

Zur Nutzung von Agrar-Reststoffen in der Holzwerkstoffindustrie

On the utilization of agricultural residues in the wood-based panel industry

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Zusammenfassung

In Anbetracht der fortschreitenden globalen Entwaldung und der steigenden Nachfrage nach Rohstoffen in allen Bereichen der Holzverarbeitung ist die Suche und Erschließung alternativer Ressourcen notwendig. Insbesondere für die Holzwerkstoffindustrie könnte sich eine (partielle) Substitution konventioneller Rohstoffe durch Agrar-Reststoffe, wie Getreidestroh oder andere geeignete Lignocellulosen, als eine zunehmend wichtigere Ressource herausstellen.

Sofern einige ökonomische Rahmenbedingungen (Transport, Lagerung, Vorbehandlungskosten) günstige Kennwerte ergeben, wird eine Reststoffverwertung den verschiedenen Aspekten nachhaltigen Wirtschaftens gerecht. Die stoffliche Nutzung nachwachsenden Rohmaterials für hochqualitative Produkte generiert eine hohe Wertschöpfung, sowohl für die Verarbeiter als auch für die zuliefernden Agrarbetriebe. Gleichzeitig werden schädliche Umweltauswirkungen (Luftverschmutzung, hoher Wasserverbrauch) infolge konventioneller Reststoffbeseitigung reduziert und der Nutzungsdruck auf die Wälder verringert.

Dieser Artikel gibt einen Überblick über Potentiale, bisherige Entwicklung sowie Herausforderungen im Bereich der Herstellung von Plattenwerkstoffen aus agrobasierenden Lignocellulosen.

Abstract

Considering on-going global deforestation and the increased demand for raw materials in all wood-processing sectors it is necessary to seek and employ alternative resources. Particularly for the wood-based panel industry (partial) substitution of conventional wood material by agricultural residues, for example, cereal straws or suitable lignocellulose-based raw materials may proof to be a resource of increasing importance.

If some economic conditions (transport, storage, pre-treatment costs) are favourable, the use of these residues will satisfy the different aspects of sustainable management. The material utilization of renewable raw materials for high quality products generates high added value for both producers and rural suppliers. Furthermore, negative impacts on the environment (air pollution, high water consumption) due to conventional waste disposal and overexploitation of forests are reduced.

An overview of potentials, development and challenges in the field of panel production made from agro-based lignocelluloses is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Abdul Khalil HPS, Siti Alwani M, Mohd Omar AK (2006) Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 1(2):220–232

    Google Scholar 

  • Alma MH, Kalaycioglu H, Bektas I, Tutuo A (2005) Properties of cotton carpel-based particleboards. Ind Crop Prod 22(2):141–149

    Article  CAS  Google Scholar 

  • Batalla L, Nuñez AJ, Marcovich NE (2005) Particleboards from peanut-shell flour. J Appl Polym Sci, Appl Polym Symp 97(3):916–923

    Article  CAS  Google Scholar 

  • Bekalo SA, Reinhardt H-W (2010) Fibers of coffee husk and hulls for the production of particleboard. Mater Struct 43:1049–1060

    Article  CAS  Google Scholar 

  • Bektas I, Guler C, Kalaycioğlu H, Mengeloglu F, Nacar M (2005) The manufacture of particleboards using sunflower stalks (Helianthus annuus l.) and poplar wood (Populus alba L.). J Compos Mater 39(5):467–473

    Article  CAS  Google Scholar 

  • Boehme C (1993) Orientierende Untersuchungen über die Verwendung von Sonnenblumenschalen zur Herstellung von Platten. Holz Roh- Werkst 51:319–323

    Article  CAS  Google Scholar 

  • Boehme C, Münz UV (1987) Zerspanungsverhalten und Verschleißminderung von Normal- und Sonderspanplatten mit einheitlicher Beschichtung bei Anwendung unterschiedlicher Zerspanungsverfahren. WKI-Bericht 17, Fraunhofer-Institut für Holzforschung, Braunschweig

  • Boquillon N, Elbez G, Schönfeld U (2004) Properties of wheat straw particleboards bonded with different types of resin. J Wood Sci 50:230–235

    Article  CAS  Google Scholar 

  • Cai Z, Wescott JM, Winandy JE (2005) Strandboard made from soy-based adhesive with high soy content. In: Wood adhesives 2005, technical forum (Poster) session, San Diego, USA, November 2–4.

    Google Scholar 

  • Calegari L, Haselein CR, Scaravelli TL, Santini EJ, Stangerlin DM, Gatto DA, Trevisan R (2007) Desempenho físico-mecânico de painéis fabricados com bambu (Bambusa vulgaris Schr.) em combinação com madeira. Revista Cerne 13(1):57–63

    Google Scholar 

  • Carvajal O, Valdés JL, Puig J (1996) Bagasse particleboards for building purpose. Holz Roh- Werkst 54:61–63

    Article  CAS  Google Scholar 

  • Colli A, Vital BR, de Cássia Oliveira Carneiro A, de Castro Silva J, Márcia Macedo Ladeira Carvalho A, Della Lucia RM (2010) Propriedades de chapas fabricadas com partículas de madeira de paricá (Schyzolobium amazonicum Huber ex. Ducke) e fibras de coco (Cocos nucifera L.). Revista Árvore 34(2):333–338

    Article  Google Scholar 

  • Çöpür Y, Güler C, Akgül M, Taşçıoğlu C (2007) Some chemical properties of hazelnut husk and its suitability for particleboard production. Build Environ 42:2568–2572

    Article  Google Scholar 

  • Çöpür Y, Güler C, Taşçıoğlu C, Tozluoğlu A (2008) Incorporation of hazelnut shell and husk in MDF production. Bioresour Technol 99(15):7402–7406

    Article  PubMed  CAS  Google Scholar 

  • Cooper PA, Balatinecz JJ, Flannery SJ (1999) Agricultural waste materials for composites: a canadian reality. In: Global panel based conference, Kuala Lumpur, Malaysia, October 18–19

    Google Scholar 

  • Deetz R (2009) Asche- und Silicatgehalt von Einjahrespflanzen in Abhängigkeit vom phänologischen Entwicklungsstadium. Diplomarbeit, Fachhochschule Eberswalde

  • Deppe H-J, Stashevski A-M (1974) Herstellung und Prüfung geschützter phenolharzverleimter Flachs-Spanplatten. Holz Roh- Werkst 32:411–413

    CAS  Google Scholar 

  • Dieter M (2008) Entwicklungsperspektiven für die Rohstoffbeschaffung der Holzwerkstoffindustrie. Holztechnologie 49(4):5–7

    Google Scholar 

  • Dix B, Meinlschmidt P, van de Flierdt A, Thole V (2009a) Leichte Spanplatten für den Möbelbau aus Rückständen der landwirtschaftlichen Produktion – Teil 1. Holztechnologie 50(2):5–10

    Google Scholar 

  • Dix B, Meinlschmidt P, van de Flierdt A, Thole V (2009b) Leichte Spanplatten für den Möbelbau aus Rückständen der landwirtschaftlichen Produktion – Teil 2. Holztechnologie 50(3):5–10

    Google Scholar 

  • Dix B, Meinlschmidt P, van de Flierdt A, Thole V (2009c) Leichte Spanplatten für den Möbelbau aus Rückständen der landwirtschaftlichen Produktion – Teil 3. Holztechnologie 50(5):5–11

    Google Scholar 

  • Dix B, Meinlschmidt P, van de Flierdt A, Thole V, Thole V, Roux M-L (2009d) Leichte Spanplatten für den Möbelbau aus Rückständen der landwirtschaftlichen Produktion – Teil 4. Holztechnologie 50(6):30–35

    Google Scholar 

  • Donahue PK, Aro MD (2006) Durable phosphate-bonded natural fiber composite products. In: Proc 10th int inorganic-bonded fiber composite conference, São Paulo, Brazil, November 15–18

    Google Scholar 

  • El Mansouri N, Pizzi A, Salvadó J (2007) Lignin-based wood panel adhesives without formaldehyde. Holz Roh- Werkst 65:65–70

    Article  CAS  Google Scholar 

  • Gertjejansen RO (1977) Properties of particleboard from sunflower stalks and aspen shavings. University of Minnesota Agriculture Experiment Station, Technical bulletin 311

  • Gertjejansen RO, Haygreen JG, French DW (1972) Particleboard from aspen flakes and sunflower hulls. University of Minnesota Agriculture Experiment Station, Technical bulletin 290

  • Ghalehno RO, Madhoushi M, Tabarsa T, Nazerian M, (2010a) The manufacture of particleboards using mixture of reed (surface layer) and commercial species (middle layer). Eur J Wood Prod. doi:10.1007/s00107-010-0437-7

  • Ghalehno MD, Nazerian M, Bayatkashkooli A (2010b) Influence of utilization of bagasse in surface layer on bending strength of three-layer particleboard. Eur J Wood Prod. doi:10.1007/s00107-010-0441-y

  • Gibson AG (1930) Insulating board from straw. Ind Eng Chem 22(3):223–226

    Article  CAS  Google Scholar 

  • Gomez-Bueso J, Westin M, Torgilsson R, Olesen PO, Simonson R (2000) Composites made from acetylated lignocellulosic fibers of different origin—Part I. Properties of dry-formed fiberboards. Holz Roh- Werkst 58:9–14

    Article  CAS  Google Scholar 

  • Grigoriou AH (2000) Straw-wood composites bonded with various adhesive systems. Wood Sci Technol 34:355–365

    Article  CAS  Google Scholar 

  • Grigoriou AH, Passialis C, Voulgaridis E (2000a) Kenaf core and bast fiber chips as raw material in production of one-layer experimental particleboards. Holz Roh- Werkst 58:290–291

    Article  CAS  Google Scholar 

  • Grigoriou AH, Passialis C, Voulgaridis E (2000b) Experimental particleboards from Kenaf plantations grown in Greece. Holz Roh- Werkst 58:309–314

    Article  CAS  Google Scholar 

  • Grigoriou AH, Ntalos GA (2001) The potential use of Ricinus communis L. (Castor) stalks as a lignocellulosic resource for particleboards. Ind Crops Prod 13:209–218

    Article  CAS  Google Scholar 

  • Gu J, Gao Z (2002) A discussion on producing agro-residue composites with isocyanate resins. J For Res 13(1):74–76

    Article  Google Scholar 

  • Gürü M, Tekeli S, Bilici İ (2006) Manufacturing of urea formaldehyde based composite particle board from almond shell. Mater Des 27(10):1148–1151

    Article  CAS  Google Scholar 

  • Guler C, Ozen R (2004) Some properties of particleboards made from cotton stalks (Gossypium hirsitum L.). Holz Roh- Werkst 62:40–43

    Article  CAS  Google Scholar 

  • Guler C, Bektas I, Kalaycioglu H (2006) The experimental particleboard manufacture from sunflower stalks (Helianthus annuus L.) and Calabrian pine (Pinus brutia Ten.). For Prod J 56(4):56–60

    Google Scholar 

  • Guler C, Copur Y, Tascioglu C (2008) The manufacture of particleboards using mixture of peanut hull (Arachis hypoqaea L.) and European Black pine (Pinus nigra Arnold) wood chips. Bioresour Technol 99(8):2893–2897

    Article  PubMed  CAS  Google Scholar 

  • Guntekin E, Karakus B (2008) Feasibility of using eggplant (Solanum melongena) stalks in the production of experimental particleboard. Ind Crops Prod 27(3):354–358

    Article  CAS  Google Scholar 

  • Guntekin E, Uner B, Karakus B (2009) Chemical composition of tomato (Solanum lycopersicum) stalk and suitability in the particleboard production. J Environ Biol 30(5):731–734

    Google Scholar 

  • Halvarsson S, Edlund H, Norgren M (2008) Properties of medium-density fibreboard (MDF) based on wheat straw and melamine modified urea formaldehyde (UMF) resin. Ind Crops Prod 28(1):37–46

    Article  CAS  Google Scholar 

  • Halvarsson S, Edlund H, Norgren M (2009) Manufacture of non-resin wheat straw fibreboards. Ind Crops Prod 29(2–3):437–445

    Article  CAS  Google Scholar 

  • Halvarsson S, Edlund H, Norgren M (2010) Manufacture of high-performance rice-straw fiberboards. Ind Eng Chem Res 49(3):1428–1435

    Article  CAS  Google Scholar 

  • Han G, Zhang C, Zhang D, Umemura K, Kawai S (1998) Upgrading of urea formaldehyde-bonded reed and wheat straw particleboards using silane cuopling agents. J Wood Sci 44:282–286

    Article  CAS  Google Scholar 

  • Han G, Umemura K, Kawai S, Kajita H (1999) Improvement mechanism of bondability in UF-bonded reed and wheat straw boards by silane coupling agent and extraction treatments. J Wood Sci 45:299–305

    Article  CAS  Google Scholar 

  • Han G, Umemura K, Zhang M, Honda T, Kawai S (2001) Development of high-performance UF-bonded reed and wheat straw medium-density fiberboard. J Wood Sci 47:350–355

    Article  Google Scholar 

  • Han G, Deng J, Zhang S, Bicho P, Wu Q (2010) Effect of steam explosion treatment on characteristics of wheat straw. Ind Crops Prod 31:28–33

    Article  CAS  Google Scholar 

  • Heller W (1980) Die Herstellung von Spanplatten aus unkonventionellen Rohstoffen. Holz Roh- Werkst 38:393–396

    Article  Google Scholar 

  • Hervillard T, Cao Q, Laborie M-PG (2007) Improving water resistance of wheat straw-based medium density fiberboards bonded with aminoplastic and phenolic resins. BioResources 2(2):148–156

    CAS  Google Scholar 

  • Hesch R (1968) Einjahrespflanzen als Rohstoffe für die Spanplattenindustrie. Holz Roh- Werkst 26(4):129–140

    Article  Google Scholar 

  • Hse C-Y, Kuo M-L (1988) Influence of extractives on wood gluing and finishing—a review. For Prod J 38(1):52–56

    CAS  Google Scholar 

  • Jossifov N (1989) Wechselbeziehungen zwischen der Dichte und wesentlichen physikalisch-mechanischen Eigenschaften industriell hergestellter mehrschichtiger Spanplatten aus Hartlaubholz. Holztechnologie 30(4):200–202

    Google Scholar 

  • Kalaycıoğlu H, Nemli G (2006) Producing composite particleboard from kenaf (Hibiscus cannabinus L.) stalks. Ind Crops Prod 24(2):177–180

    Article  CAS  Google Scholar 

  • Khali DP, Negi A, Jain VK (2005) Panel and panel products of lignocellulosic materials. In: Forest products special, vol 5. Forest Research Institute, Dehradun

    Google Scholar 

  • Kharazipour A, Bohn C (2006) Verwendung. von Popcorn für Holz- und Verbundwerkstoffe. Deutsches Patent AKZ 102006047279:9

  • Kharazipour A, Bohn C (2008) Use of popcorn for timber and composite materials. WO 2008/040747

  • Kharazipour A, Bohn C (2010) Use of popcorn for timber and composite materials. US-Patent 2010/0112339A1

  • Khedari J, Nankongnab N, Hirunlab J, Teekasap S (2004) New lowcost insulation particleboards from mixture of durian peel and coconut coir. Build Environ 39:59–65

    Article  Google Scholar 

  • Klauditz W (1962) Zur Entwicklung und zum Stande der Holzspanplattenherstellung 1955 bis 1961. Holz Roh- Werkst 20(1):1–12

    Article  Google Scholar 

  • Kowaluk G, Frackowiak I, Beer P, Palubicki B, Szymanski W (2007) Comparison of the tool wear in milling of the particleboards produced from wood and rape straw. In: Navi P, Guidoum A (Hrsg) Proc 3rd int symposium on wood machining, Lausanne, May 21–23

    Google Scholar 

  • Kowaluk G, Palubick B, Frackowiak I, Marchal R, Beer P (2010) Influence of ligno-cellulosic particles on tribological properties of boards. Eur J Wood Prod 68:95–98

    Article  CAS  Google Scholar 

  • Kozlowski R, Helwig M (1998) Lignocellulosic polymer composite. In: Prasad PN (Hrsg) Science and technology of polymer and advanced materials. Plenum, New York, pp 679–698

    Google Scholar 

  • Kozlowski R, Mieleniak B, Helwig M, Przepiera A (1999) Flame resistent lignocellulosic-mineral composite particleboards. Polym Degrad Stab 64(3):523–528

    Article  CAS  Google Scholar 

  • Khristova P, Yossifov N, Gabir S (1996) Particleboard from sunflower stalks: preliminary trials. Bioresour Technol 58(3):319–321

    Article  CAS  Google Scholar 

  • Lee Y-K, Kim S, Yang H-S, Kim H-J (2003) Mechanical properties of rice husk flour-wood particleboard by urea-formaldehyde resin. Mokchae Konghak 31(3):42–49

    Google Scholar 

  • Lee S, Shupe TF, She CY (2006) Mechanical and physical properties of agro-based fiberboard. Holz Roh- Werkst 64:74–79

    Article  CAS  Google Scholar 

  • Li B, Zheng Y, Pan Z (2009) Improved properties of medium-density particleboard manufactured from saline Creeping Wild Rye and HDPE plastic. Ind Crops Prod 30:65–71

    Article  CAS  Google Scholar 

  • Li X (2004) Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. Master thesis, Louisiana State University and Agriculture and Mechanical College

  • Li X, Cui Z, Winandy JE, Basta AH (2010) Selected properties of particleboard panels manufactured from rice straws of different geometries. Bioresour Technol 101(12):4662–4666

    Article  PubMed  CAS  Google Scholar 

  • Lu R (1999) Ecological effects of developing wheat straw composite. [J]. World For Res 12(6):28–31

    Google Scholar 

  • Mansour OY, Kamel S, Nassar MA (1998) Lignocellulosic polymer composites IV. J Appl Polym Sci, Appl Polym Symp 69(5):845–855

    Article  CAS  Google Scholar 

  • Mansouri HR, Navarrete P, Pizzi A, Tapin-Lingua S, Benjelloun-Mlayah B, Pasch H, Rigolet S (2010) Synthetic resin-free wood panel adhesives from mixed low molecular mass lignin and tannin. Eur J Wood Prod. doi:10.1007/s00107-010-0423-0

  • Mantanis G, Nakos P, Berns J, Rigal L (2000) Turning agricultural straw residues into value-added composite products—A new environmentally friendly technology. In: Proc 5th int conference on environmental pollution, Thessaloniki, Greece, August 28–31

    Google Scholar 

  • Mantanis G, Berns J (2001) Strawboard bonded with urea-formaldehyde resins. In: Proc 35th int particleboard/composite material symposium, Pullman, USA, April 2–5

    Google Scholar 

  • Markessini E, Roffael E, Rigal L (1997) Panels from annual plant fibers bonded with urea-formaldehyde resins. In: Proc 31th int particleboard/composite materials symposium, Pullman, USA, April 8–10

    Google Scholar 

  • McLeod BJ (2008) California Agriboard LLC. J Ind Ecol 7(3-4):205–208

    Article  Google Scholar 

  • Mo X, Hu j, Sun XS, Ratto JA (2001) Compression and tensile strength of low-density straw-protein particleboard. Ind Crops Prod 14:1–9

    Article  CAS  Google Scholar 

  • Mo X, Cheng E, Wang D, Sun XS (2003) Physical properties of medium-density wheat straw particleboard using different adhesive. Ind Crops Prod 18:47–53

    Article  CAS  Google Scholar 

  • Moslemi AA (1974) Particleboard, vol 1: materials. Southern Illinois Uni. Press, Carbondale

    Google Scholar 

  • Munawar SS, Umemura K, Kawai S (2007) Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. J Wood Sci 53:108–113

    Article  Google Scholar 

  • Nemli G, Kalaycıoğlu H, Alp T (2001) Suitability of date palm (Phoenix dactyliferia) branches for particleboard production. Holz Roh- Werkst 59(6):411–412

    Article  CAS  Google Scholar 

  • Nemli G, Kirci H, Serdar B, Ay N (2003) Suitability of kiwi (Actinidia sinensis Planch.) prunings for particleboard manufacturing. Ind Crops Prod 17(1):39–46

    Article  CAS  Google Scholar 

  • Nemli G, Demirel S, Gümüşkaya E, Aslan M, Acar C (2009) Feasibility of incorporating waste grass clippings (Lolium perenne L.) in particleboard composites. Waste Manag 29(3):1129–1131

    Article  PubMed  CAS  Google Scholar 

  • Neufeld B (2010) Particleboard and medium density fibreboard in the Pacific Rim and Europe 2009–2013. BIS Shrapnel Business Research and Forecasting, Sydney

  • Nikvash N, Kraft R, Kharazipour A, Euring M (2010) Comparative properties of bagasse, canola and hemp particle boards. Eur J Wood Prod 68:323–327

    Article  CAS  Google Scholar 

  • Noack D, Schwab E (1977) Beziehungen zwischen den Rohstoff-Eigenschaften und den Anforderungen an die Verwendung—Eigenschaften und Verwendung von plattenförmigen Holzwerkstoffen. Holz Roh- Werkst 35:421–429

    Article  Google Scholar 

  • Ntalos GA, Grigoriou AH (2002) Characterization and utilization of vine prunings as a wood substitute for particleboard production. Ind Crops Prod 16:59–68

    Article  Google Scholar 

  • Nzokou P, Kamdem DP (2004) Influence of wood extractives on moisture sorption and wettability of red oak (Quercus rubra), black cherry (Prunus serotina) and red pine (Pinus resinosa). Wood Fiber Sci 36(4):483–492

    CAS  Google Scholar 

  • Okuda N, Sato M (2006) Water resistance properties of kenaf core binderless boards. J Wood Sci 52:422–428

    Article  Google Scholar 

  • Okuda N, Sato M (2007) Bond durability of kenaf core binderless boards I. Two-cycle accelerated aging boil test. J Wood Sci 53:139–142

    Article  Google Scholar 

  • Okuda N, Sato M (2008) Bond durability of kenaf core binderless boards II. Outdoor exposure test. J Wood Sci 54:36–44

    Article  Google Scholar 

  • Osarenmwinda JO, Nwachukwu JC (2007) Effect of particle size on some properties of rice husk particleboard. Adv Mater Res 18–19:43–48

    Article  Google Scholar 

  • Papadopoulos AN, Traboulay EA (2002) One layer experimental particleboard from coconut chips (Cocos nucifera L.). Holz Roh- Werkst 60:394–396

    Article  CAS  Google Scholar 

  • Papadopoulos AN, Hague JRB (2003) The potential for using flax (Linum usitatissimum L.) shiv as a lignocellulosic raw material for particleboard. Ind Crops Prod 17(2):143–147

    Article  CAS  Google Scholar 

  • Papadopoulos AN, Hill CAS, Gkaraveli A, Ntalos GA, Karastergiou SP (2004) Bamboo chips (Bambusa vulgaris) as an alternative lignocellulosic raw material for particleboard manufacture. Holz Roh- Werkst 62:36–39

    Article  CAS  Google Scholar 

  • Pauls A, Carus M, Piotrowski S, Breuer T, Frölich W, Hau A, Gahle C (2008) Potentialanalyse über alternative heimische und exotische Nachwachsende Rohstoffe für die Holzwerkstoffindustrie in Deutschland. nova-Institut, Hürth

  • Pedieu R, Riedl B, Pichette A (2008) Measurement of wood and bark particles acidity and their impact on the curing of urea formaldehyde resin during the hot pressing of mixed panels. Holz Roh- Werkst 66:113–117

    Article  CAS  Google Scholar 

  • Ramli R, Shaler S, Jamaludin MA (2002) Properties of medium density fibreboard from oil palm empty fruit bunch fibre. J Oil Palm Res 14(2):34–40

    Google Scholar 

  • Revankor SR, Nath SK (2005) Particle board from coffee seed husk. In: Forest products special, vol 5. Forest Research Institute, Dehradun, S 5

    Google Scholar 

  • Richter C (1993) Neues Verfahren zur Herstellung von Dämmstoffen niedriger Dichte aus Holz und Einjahrespflanzen. Holz Roh- Werkst 51:235–239

    Article  CAS  Google Scholar 

  • Ritter N, Kharazipour A (2009) Development of three-layered popcorn based particleboards by a combinition of maize and wood. In: Kharazipour AR, Schöpper C, Müller C, Euring M (Hrsg) Review of forests, wood products and wood biotechnology of Iran and Germany—Part III. Universitätsverlag Göttingen, Göffingen,

    Google Scholar 

  • Rowell RM (1995) A new generation of composite materials from agro-based fiber. In: Prasad PN, Mark JE, Fai TJ (Hrsg) Polymers and other advanced materials: emerging technologies and business opportunities. In: Proc 3rd int conference on frontiers of polymers and advanced materials, Kuala Lumpur, Malaysia, January 16–20.

    Google Scholar 

  • Salje E, Stühmeier W (1983) Einfluß von Rohdichte und Sandgehalt auf die Zerspanung von Spanplatten beim Fräsen. Holzzentralblatt 109(135):1912 1930

    Google Scholar 

  • Sampathrajan A, Vijayaraghavan NC, Swaminathan KR (1992) Mechanical and thermal properties of particle boards made from farm residues. Bioresour Technol 40:249–251

    Article  CAS  Google Scholar 

  • Sauter SL (1996) Developing composites from wheat straw. In: Proc 30th int particleboard/composite materials symposium, Pullman, USA

    Google Scholar 

  • Schöpper C, Kharazipour A, Bohn C (2009) Production of innovative hemp based three-layered particle boards with reduced raw densities and low formaldehyde emissions. Int J Mater Prod Technol 36(1–4):358–371

    Article  Google Scholar 

  • Schulz T (2007) Faserstoffe aus Weizenstroh als Ersatz für Holzfaserstoffe zur Herstellung von MDF. Holztechnologie 48(1):47–48

    Google Scholar 

  • Sellers T, Miller GD, Fuller MJ (1993) Kenaf core as a board raw material. For Prod J 43(7/8):69–71

    CAS  Google Scholar 

  • Sellers T (2001) Wood adhesive innovations and applications in North America. For Prod J 51(6):12–22

    CAS  Google Scholar 

  • Tabarsa T, Jahanshahi S, Ashori A (2010) Mechanical and physical properties of wheat straw boards bonded with a tannin modified phenol-formaldehyde adhesive. Compos B Eng. doi:10.1016/j.compositesb.2010.09.012

  • Thole V, WeißD (1992) Eignung von Einjahrespflanzen als Zuschlagstoffe für Gipsspanplatten. Holz Roh- Werkst 50:241–252

    Article  CAS  Google Scholar 

  • Thole V (2001) Faserplatten aus Palmenresten. Holz Kunstst 4:90–92

    Google Scholar 

  • Thole V (2005) Einjahrespflanzen als Rohstoff für MDF—aktueller Stand. MDF Mag 11:38–43

    Google Scholar 

  • Torkaman J (2010) Improvement of bondability in rice husk particleboard made with sodium silicate. In: Proc. 2nd int conference on sustainable construction materials and technologies, Ancona, Italy, June 28–30

    Google Scholar 

  • Tröger F, Pinke G (1988) Beitrag zur Herstellung PMDI-verleimter Spanplatten mit verschiedenen Strohanteilen. Holz Roh- Werkst 46:389–395

    Article  Google Scholar 

  • Tröger F, Barbu MC, Seemann C (1995) Verstärkung von Miscanthus- und Holzspanplatten mit Flachsfasermatten. Holz Roh- Werkst 53:268

    Article  Google Scholar 

  • Tröger F, Wegener G, Seemann C (1998) Miscanthus and flax as raw material for reinforced particleboards. Ind Crops Prod 8:113–121

    Article  Google Scholar 

  • UNECE/FAO (2010) Forest products annual market review 2009–2010. Geneva Timber and Forest Study Paper 25, United Nations, New York and Geneva

  • Vick CB (1999) Adhesive bonding of wood materials. In: Wood handbook: wood as an engineering material, gen tech rep FPL-GRT-113, USDA Forest Serv, Forest Prod Lab, Madison

  • Wagenführ R (1989) Anatomie des Holzes. VEB Fachbuchverlag, Leipzig

    Google Scholar 

  • Walther T, Kartal SN, Hwang WJ, Umemura K, Kawai S (2007) Strength, decay and termite resistance of oriented kenaf fiberboards. J Wood Sci 53:481–486

    Article  Google Scholar 

  • Wassipaul F, Kail A (1976) Untersuchung des Zusammenhanges zwischen dem Aufbau von Holzwerkstoffen und der Werkzeugabnutzung. Holzforsch Holzverwert 28(3):59–65

    Google Scholar 

  • Widyorini R (2005) Self-bonding characterization of non-wood lignocellulosic materials. Dissertation, Kyoto University

  • Widyorini R, Xu J, Umemura K, Kawai S (2005) Manufacture and properties of binderless particleboard from bagasse. I. Effects of raw material type, storage methods, and manufacturing process. J Wood Sci 51:648–654

    Article  Google Scholar 

  • Winandy JE (2005) Achieving resource sustainability and enhancing economic development through biomass utilization. In: International workshop on prefabricated housing from bamboo based panels, Beijing, China, November 24–25

    Google Scholar 

  • Wu J, Gatewood BM (1998) Bleaching of wheat straw, an alternative cellulosic (hard) fiber for potential industrial application. In: Int conference and exhibition of the american association of textile colorist and chemists, Philadelphia, USA, September 22–25

    Google Scholar 

  • Xing C, SY Zhang, Deng J (2004) Effect of wood acidity and catalyst on UF resin gel time. Holzforschung 58:406–412

    Article  Google Scholar 

  • Xing C, SY Zhang, Deng J, Wang S (2007) Urea–formaldehyde-resin gel time as affected by the pH value, solid content, and catalyst. J Appl Polym Sci, Appl Polym Symp 103(3):1566–1569

    CAS  Google Scholar 

  • Xu J, Sugawara R, Widyorini R, Han G, Kawai S (2004) Manufacture and properties of low-density binderless particleboard from kenaf core. J Wood Sci 50:62–67

    Article  Google Scholar 

  • Xu J, Sugawara R, Widyorini R, Kawai S (2005) Properties of kenaf core binderless particleboard reinforced with kenaf bast fiber-woven sheets. J Wood Sci 51:415–420

    Article  CAS  Google Scholar 

  • Xu J, Widyorini R, Yamauchi H, Kawai S (2006) Development of binderless fiberboard from kenaf core. J Wood Sci 52(3):236–243

    Article  Google Scholar 

  • Yalinkilic MK, Imamura Y, Takahashi M, Kalaycioglu H, Nemli G, Demirci Z, Ozdemir T (1998) Biological, physical and mechanical properties of particleboard manufactured from waste tea leaves. Int Biodeterior Biodegrad 41:75–84

    Article  Google Scholar 

  • Youngquist JA, English BE, Spelter H, Chow P (1993) Agricultural fibers in composition panels. In: Proc 27th particleboard/composite materials symposium, Pullman, USA, March 30–31, April 1

    Google Scholar 

  • Youngquist JA, English BE, Scharmer RC, Chow P, Shook SR (1994) Literature review on use of nonwood plant fibers for building materials and panels. Gen tech rep FPL-GTR-80, USDA Forest Serv, Forest Prod Lab, Madison, S 146

  • Youngquist JA, Krzysik AM, English BW, Spelter HN, Chow P (1996) Agricultural fibers for use in building components. In: The use of recycled wood and paper in building applications. Proc No 7286. Forest Research Institute, Madison,

    Google Scholar 

  • Youngquist JA, Krzysik AM, Chow P, Meimban R (1997) Properties of composite panels. In: Rowell RM, RA Young, Rowell JK (Hrsg) Paper and composites from agro-based resources. CRC Press, Boca Raton, S 446

    Google Scholar 

  • Zhang Y, Lu X, Pizzi A, Delmotte L (2003) Verbesserung der Bindung bei Weizenstrohplatten durch Vorbehandlung mit Enzymen. Holz Roh- Werkst 61(1):49–54

    Article  CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R, Jenkins BM, Blunk S (2007) Particleboard quality characteristics of saline jose tall wheatgrass and chemical treatment effect. Bioresour Technol 98:1304–1310

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, C., Schwarz, U. & Thole, V. Zur Nutzung von Agrar-Reststoffen in der Holzwerkstoffindustrie. Eur. J. Wood Prod. 70, 587–594 (2012). https://doi.org/10.1007/s00107-011-0589-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-011-0589-0

Navigation