Advertisement

European Journal of Wood and Wood Products

, Volume 70, Issue 5, pp 587–594 | Cite as

Zur Nutzung von Agrar-Reststoffen in der Holzwerkstoffindustrie

  • Christian MüllerEmail author
  • Ulrich Schwarz
  • Volker Thole
Originals Originalarbeiten

Zusammenfassung

In Anbetracht der fortschreitenden globalen Entwaldung und der steigenden Nachfrage nach Rohstoffen in allen Bereichen der Holzverarbeitung ist die Suche und Erschließung alternativer Ressourcen notwendig. Insbesondere für die Holzwerkstoffindustrie könnte sich eine (partielle) Substitution konventioneller Rohstoffe durch Agrar-Reststoffe, wie Getreidestroh oder andere geeignete Lignocellulosen, als eine zunehmend wichtigere Ressource herausstellen.

Sofern einige ökonomische Rahmenbedingungen (Transport, Lagerung, Vorbehandlungskosten) günstige Kennwerte ergeben, wird eine Reststoffverwertung den verschiedenen Aspekten nachhaltigen Wirtschaftens gerecht. Die stoffliche Nutzung nachwachsenden Rohmaterials für hochqualitative Produkte generiert eine hohe Wertschöpfung, sowohl für die Verarbeiter als auch für die zuliefernden Agrarbetriebe. Gleichzeitig werden schädliche Umweltauswirkungen (Luftverschmutzung, hoher Wasserverbrauch) infolge konventioneller Reststoffbeseitigung reduziert und der Nutzungsdruck auf die Wälder verringert.

Dieser Artikel gibt einen Überblick über Potentiale, bisherige Entwicklung sowie Herausforderungen im Bereich der Herstellung von Plattenwerkstoffen aus agrobasierenden Lignocellulosen.

On the utilization of agricultural residues in the wood-based panel industry

Abstract

Considering on-going global deforestation and the increased demand for raw materials in all wood-processing sectors it is necessary to seek and employ alternative resources. Particularly for the wood-based panel industry (partial) substitution of conventional wood material by agricultural residues, for example, cereal straws or suitable lignocellulose-based raw materials may proof to be a resource of increasing importance.

If some economic conditions (transport, storage, pre-treatment costs) are favourable, the use of these residues will satisfy the different aspects of sustainable management. The material utilization of renewable raw materials for high quality products generates high added value for both producers and rural suppliers. Furthermore, negative impacts on the environment (air pollution, high water consumption) due to conventional waste disposal and overexploitation of forests are reduced.

An overview of potentials, development and challenges in the field of panel production made from agro-based lignocelluloses is provided.

Literatur

  1. Abdul Khalil HPS, Siti Alwani M, Mohd Omar AK (2006) Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources 1(2):220–232 Google Scholar
  2. Alma MH, Kalaycioglu H, Bektas I, Tutuo A (2005) Properties of cotton carpel-based particleboards. Ind Crop Prod 22(2):141–149 CrossRefGoogle Scholar
  3. Batalla L, Nuñez AJ, Marcovich NE (2005) Particleboards from peanut-shell flour. J Appl Polym Sci, Appl Polym Symp 97(3):916–923 CrossRefGoogle Scholar
  4. Bekalo SA, Reinhardt H-W (2010) Fibers of coffee husk and hulls for the production of particleboard. Mater Struct 43:1049–1060 CrossRefGoogle Scholar
  5. Bektas I, Guler C, Kalaycioğlu H, Mengeloglu F, Nacar M (2005) The manufacture of particleboards using sunflower stalks (Helianthus annuus l.) and poplar wood (Populus alba L.). J Compos Mater 39(5):467–473 CrossRefGoogle Scholar
  6. Boehme C (1993) Orientierende Untersuchungen über die Verwendung von Sonnenblumenschalen zur Herstellung von Platten. Holz Roh- Werkst 51:319–323 CrossRefGoogle Scholar
  7. Boehme C, Münz UV (1987) Zerspanungsverhalten und Verschleißminderung von Normal- und Sonderspanplatten mit einheitlicher Beschichtung bei Anwendung unterschiedlicher Zerspanungsverfahren. WKI-Bericht 17, Fraunhofer-Institut für Holzforschung, Braunschweig Google Scholar
  8. Boquillon N, Elbez G, Schönfeld U (2004) Properties of wheat straw particleboards bonded with different types of resin. J Wood Sci 50:230–235 CrossRefGoogle Scholar
  9. Cai Z, Wescott JM, Winandy JE (2005) Strandboard made from soy-based adhesive with high soy content. In: Wood adhesives 2005, technical forum (Poster) session, San Diego, USA, November 2–4. Google Scholar
  10. Calegari L, Haselein CR, Scaravelli TL, Santini EJ, Stangerlin DM, Gatto DA, Trevisan R (2007) Desempenho físico-mecânico de painéis fabricados com bambu (Bambusa vulgaris Schr.) em combinação com madeira. Revista Cerne 13(1):57–63 Google Scholar
  11. Carvajal O, Valdés JL, Puig J (1996) Bagasse particleboards for building purpose. Holz Roh- Werkst 54:61–63 CrossRefGoogle Scholar
  12. Colli A, Vital BR, de Cássia Oliveira Carneiro A, de Castro Silva J, Márcia Macedo Ladeira Carvalho A, Della Lucia RM (2010) Propriedades de chapas fabricadas com partículas de madeira de paricá (Schyzolobium amazonicum Huber ex. Ducke) e fibras de coco (Cocos nucifera L.). Revista Árvore 34(2):333–338 CrossRefGoogle Scholar
  13. Çöpür Y, Güler C, Akgül M, Taşçıoğlu C (2007) Some chemical properties of hazelnut husk and its suitability for particleboard production. Build Environ 42:2568–2572 CrossRefGoogle Scholar
  14. Çöpür Y, Güler C, Taşçıoğlu C, Tozluoğlu A (2008) Incorporation of hazelnut shell and husk in MDF production. Bioresour Technol 99(15):7402–7406 PubMedCrossRefGoogle Scholar
  15. Cooper PA, Balatinecz JJ, Flannery SJ (1999) Agricultural waste materials for composites: a canadian reality. In: Global panel based conference, Kuala Lumpur, Malaysia, October 18–19 Google Scholar
  16. Deetz R (2009) Asche- und Silicatgehalt von Einjahrespflanzen in Abhängigkeit vom phänologischen Entwicklungsstadium. Diplomarbeit, Fachhochschule Eberswalde Google Scholar
  17. Deppe H-J, Stashevski A-M (1974) Herstellung und Prüfung geschützter phenolharzverleimter Flachs-Spanplatten. Holz Roh- Werkst 32:411–413 Google Scholar
  18. Dieter M (2008) Entwicklungsperspektiven für die Rohstoffbeschaffung der Holzwerkstoffindustrie. Holztechnologie 49(4):5–7 Google Scholar
  19. Dix B, Meinlschmidt P, van de Flierdt A, Thole V (2009a) Leichte Spanplatten für den Möbelbau aus Rückständen der landwirtschaftlichen Produktion – Teil 1. Holztechnologie 50(2):5–10 Google Scholar
  20. Dix B, Meinlschmidt P, van de Flierdt A, Thole V (2009b) Leichte Spanplatten für den Möbelbau aus Rückständen der landwirtschaftlichen Produktion – Teil 2. Holztechnologie 50(3):5–10 Google Scholar
  21. Dix B, Meinlschmidt P, van de Flierdt A, Thole V (2009c) Leichte Spanplatten für den Möbelbau aus Rückständen der landwirtschaftlichen Produktion – Teil 3. Holztechnologie 50(5):5–11 Google Scholar
  22. Dix B, Meinlschmidt P, van de Flierdt A, Thole V, Thole V, Roux M-L (2009d) Leichte Spanplatten für den Möbelbau aus Rückständen der landwirtschaftlichen Produktion – Teil 4. Holztechnologie 50(6):30–35 Google Scholar
  23. Donahue PK, Aro MD (2006) Durable phosphate-bonded natural fiber composite products. In: Proc 10th int inorganic-bonded fiber composite conference, São Paulo, Brazil, November 15–18 Google Scholar
  24. El Mansouri N, Pizzi A, Salvadó J (2007) Lignin-based wood panel adhesives without formaldehyde. Holz Roh- Werkst 65:65–70 CrossRefGoogle Scholar
  25. Gertjejansen RO (1977) Properties of particleboard from sunflower stalks and aspen shavings. University of Minnesota Agriculture Experiment Station, Technical bulletin 311 Google Scholar
  26. Gertjejansen RO, Haygreen JG, French DW (1972) Particleboard from aspen flakes and sunflower hulls. University of Minnesota Agriculture Experiment Station, Technical bulletin 290 Google Scholar
  27. Ghalehno RO, Madhoushi M, Tabarsa T, Nazerian M, (2010a) The manufacture of particleboards using mixture of reed (surface layer) and commercial species (middle layer). Eur J Wood Prod. doi: 10.1007/s00107-010-0437-7
  28. Ghalehno MD, Nazerian M, Bayatkashkooli A (2010b) Influence of utilization of bagasse in surface layer on bending strength of three-layer particleboard. Eur J Wood Prod. doi: 10.1007/s00107-010-0441-y
  29. Gibson AG (1930) Insulating board from straw. Ind Eng Chem 22(3):223–226 CrossRefGoogle Scholar
  30. Gomez-Bueso J, Westin M, Torgilsson R, Olesen PO, Simonson R (2000) Composites made from acetylated lignocellulosic fibers of different origin—Part I. Properties of dry-formed fiberboards. Holz Roh- Werkst 58:9–14 CrossRefGoogle Scholar
  31. Grigoriou AH (2000) Straw-wood composites bonded with various adhesive systems. Wood Sci Technol 34:355–365 CrossRefGoogle Scholar
  32. Grigoriou AH, Passialis C, Voulgaridis E (2000a) Kenaf core and bast fiber chips as raw material in production of one-layer experimental particleboards. Holz Roh- Werkst 58:290–291 CrossRefGoogle Scholar
  33. Grigoriou AH, Passialis C, Voulgaridis E (2000b) Experimental particleboards from Kenaf plantations grown in Greece. Holz Roh- Werkst 58:309–314 CrossRefGoogle Scholar
  34. Grigoriou AH, Ntalos GA (2001) The potential use of Ricinus communis L. (Castor) stalks as a lignocellulosic resource for particleboards. Ind Crops Prod 13:209–218 CrossRefGoogle Scholar
  35. Gu J, Gao Z (2002) A discussion on producing agro-residue composites with isocyanate resins. J For Res 13(1):74–76 CrossRefGoogle Scholar
  36. Gürü M, Tekeli S, Bilici İ (2006) Manufacturing of urea formaldehyde based composite particle board from almond shell. Mater Des 27(10):1148–1151 CrossRefGoogle Scholar
  37. Guler C, Ozen R (2004) Some properties of particleboards made from cotton stalks (Gossypium hirsitum L.). Holz Roh- Werkst 62:40–43 CrossRefGoogle Scholar
  38. Guler C, Bektas I, Kalaycioglu H (2006) The experimental particleboard manufacture from sunflower stalks (Helianthus annuus L.) and Calabrian pine (Pinus brutia Ten.). For Prod J 56(4):56–60 Google Scholar
  39. Guler C, Copur Y, Tascioglu C (2008) The manufacture of particleboards using mixture of peanut hull (Arachis hypoqaea L.) and European Black pine (Pinus nigra Arnold) wood chips. Bioresour Technol 99(8):2893–2897 PubMedCrossRefGoogle Scholar
  40. Guntekin E, Karakus B (2008) Feasibility of using eggplant (Solanum melongena) stalks in the production of experimental particleboard. Ind Crops Prod 27(3):354–358 CrossRefGoogle Scholar
  41. Guntekin E, Uner B, Karakus B (2009) Chemical composition of tomato (Solanum lycopersicum) stalk and suitability in the particleboard production. J Environ Biol 30(5):731–734 Google Scholar
  42. Halvarsson S, Edlund H, Norgren M (2008) Properties of medium-density fibreboard (MDF) based on wheat straw and melamine modified urea formaldehyde (UMF) resin. Ind Crops Prod 28(1):37–46 CrossRefGoogle Scholar
  43. Halvarsson S, Edlund H, Norgren M (2009) Manufacture of non-resin wheat straw fibreboards. Ind Crops Prod 29(2–3):437–445 CrossRefGoogle Scholar
  44. Halvarsson S, Edlund H, Norgren M (2010) Manufacture of high-performance rice-straw fiberboards. Ind Eng Chem Res 49(3):1428–1435 CrossRefGoogle Scholar
  45. Han G, Zhang C, Zhang D, Umemura K, Kawai S (1998) Upgrading of urea formaldehyde-bonded reed and wheat straw particleboards using silane cuopling agents. J Wood Sci 44:282–286 CrossRefGoogle Scholar
  46. Han G, Umemura K, Kawai S, Kajita H (1999) Improvement mechanism of bondability in UF-bonded reed and wheat straw boards by silane coupling agent and extraction treatments. J Wood Sci 45:299–305 CrossRefGoogle Scholar
  47. Han G, Umemura K, Zhang M, Honda T, Kawai S (2001) Development of high-performance UF-bonded reed and wheat straw medium-density fiberboard. J Wood Sci 47:350–355 CrossRefGoogle Scholar
  48. Han G, Deng J, Zhang S, Bicho P, Wu Q (2010) Effect of steam explosion treatment on characteristics of wheat straw. Ind Crops Prod 31:28–33 CrossRefGoogle Scholar
  49. Heller W (1980) Die Herstellung von Spanplatten aus unkonventionellen Rohstoffen. Holz Roh- Werkst 38:393–396 CrossRefGoogle Scholar
  50. Hervillard T, Cao Q, Laborie M-PG (2007) Improving water resistance of wheat straw-based medium density fiberboards bonded with aminoplastic and phenolic resins. BioResources 2(2):148–156 Google Scholar
  51. Hesch R (1968) Einjahrespflanzen als Rohstoffe für die Spanplattenindustrie. Holz Roh- Werkst 26(4):129–140 CrossRefGoogle Scholar
  52. Hse C-Y, Kuo M-L (1988) Influence of extractives on wood gluing and finishing—a review. For Prod J 38(1):52–56 Google Scholar
  53. Jossifov N (1989) Wechselbeziehungen zwischen der Dichte und wesentlichen physikalisch-mechanischen Eigenschaften industriell hergestellter mehrschichtiger Spanplatten aus Hartlaubholz. Holztechnologie 30(4):200–202 Google Scholar
  54. Kalaycıoğlu H, Nemli G (2006) Producing composite particleboard from kenaf (Hibiscus cannabinus L.) stalks. Ind Crops Prod 24(2):177–180 CrossRefGoogle Scholar
  55. Khali DP, Negi A, Jain VK (2005) Panel and panel products of lignocellulosic materials. In: Forest products special, vol 5. Forest Research Institute, Dehradun Google Scholar
  56. Kharazipour A, Bohn C (2006) Verwendung. von Popcorn für Holz- und Verbundwerkstoffe. Deutsches Patent AKZ 102006047279:9 Google Scholar
  57. Kharazipour A, Bohn C (2008) Use of popcorn for timber and composite materials. WO 2008/040747 Google Scholar
  58. Kharazipour A, Bohn C (2010) Use of popcorn for timber and composite materials. US-Patent 2010/0112339A1 Google Scholar
  59. Khedari J, Nankongnab N, Hirunlab J, Teekasap S (2004) New lowcost insulation particleboards from mixture of durian peel and coconut coir. Build Environ 39:59–65 CrossRefGoogle Scholar
  60. Klauditz W (1962) Zur Entwicklung und zum Stande der Holzspanplattenherstellung 1955 bis 1961. Holz Roh- Werkst 20(1):1–12 CrossRefGoogle Scholar
  61. Kowaluk G, Frackowiak I, Beer P, Palubicki B, Szymanski W (2007) Comparison of the tool wear in milling of the particleboards produced from wood and rape straw. In: Navi P, Guidoum A (Hrsg) Proc 3rd int symposium on wood machining, Lausanne, May 21–23 Google Scholar
  62. Kowaluk G, Palubick B, Frackowiak I, Marchal R, Beer P (2010) Influence of ligno-cellulosic particles on tribological properties of boards. Eur J Wood Prod 68:95–98 CrossRefGoogle Scholar
  63. Kozlowski R, Helwig M (1998) Lignocellulosic polymer composite. In: Prasad PN (Hrsg) Science and technology of polymer and advanced materials. Plenum, New York, pp 679–698 Google Scholar
  64. Kozlowski R, Mieleniak B, Helwig M, Przepiera A (1999) Flame resistent lignocellulosic-mineral composite particleboards. Polym Degrad Stab 64(3):523–528 CrossRefGoogle Scholar
  65. Khristova P, Yossifov N, Gabir S (1996) Particleboard from sunflower stalks: preliminary trials. Bioresour Technol 58(3):319–321 CrossRefGoogle Scholar
  66. Lee Y-K, Kim S, Yang H-S, Kim H-J (2003) Mechanical properties of rice husk flour-wood particleboard by urea-formaldehyde resin. Mokchae Konghak 31(3):42–49 Google Scholar
  67. Lee S, Shupe TF, She CY (2006) Mechanical and physical properties of agro-based fiberboard. Holz Roh- Werkst 64:74–79 CrossRefGoogle Scholar
  68. Li B, Zheng Y, Pan Z (2009) Improved properties of medium-density particleboard manufactured from saline Creeping Wild Rye and HDPE plastic. Ind Crops Prod 30:65–71 CrossRefGoogle Scholar
  69. Li X (2004) Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. Master thesis, Louisiana State University and Agriculture and Mechanical College Google Scholar
  70. Li X, Cui Z, Winandy JE, Basta AH (2010) Selected properties of particleboard panels manufactured from rice straws of different geometries. Bioresour Technol 101(12):4662–4666 PubMedCrossRefGoogle Scholar
  71. Lu R (1999) Ecological effects of developing wheat straw composite. [J]. World For Res 12(6):28–31 Google Scholar
  72. Mansour OY, Kamel S, Nassar MA (1998) Lignocellulosic polymer composites IV. J Appl Polym Sci, Appl Polym Symp 69(5):845–855 CrossRefGoogle Scholar
  73. Mansouri HR, Navarrete P, Pizzi A, Tapin-Lingua S, Benjelloun-Mlayah B, Pasch H, Rigolet S (2010) Synthetic resin-free wood panel adhesives from mixed low molecular mass lignin and tannin. Eur J Wood Prod. doi: 10.1007/s00107-010-0423-0
  74. Mantanis G, Nakos P, Berns J, Rigal L (2000) Turning agricultural straw residues into value-added composite products—A new environmentally friendly technology. In: Proc 5th int conference on environmental pollution, Thessaloniki, Greece, August 28–31 Google Scholar
  75. Mantanis G, Berns J (2001) Strawboard bonded with urea-formaldehyde resins. In: Proc 35th int particleboard/composite material symposium, Pullman, USA, April 2–5 Google Scholar
  76. Markessini E, Roffael E, Rigal L (1997) Panels from annual plant fibers bonded with urea-formaldehyde resins. In: Proc 31th int particleboard/composite materials symposium, Pullman, USA, April 8–10 Google Scholar
  77. McLeod BJ (2008) California Agriboard LLC. J Ind Ecol 7(3-4):205–208 CrossRefGoogle Scholar
  78. Mo X, Hu j, Sun XS, Ratto JA (2001) Compression and tensile strength of low-density straw-protein particleboard. Ind Crops Prod 14:1–9 CrossRefGoogle Scholar
  79. Mo X, Cheng E, Wang D, Sun XS (2003) Physical properties of medium-density wheat straw particleboard using different adhesive. Ind Crops Prod 18:47–53 CrossRefGoogle Scholar
  80. Moslemi AA (1974) Particleboard, vol 1: materials. Southern Illinois Uni. Press, Carbondale Google Scholar
  81. Munawar SS, Umemura K, Kawai S (2007) Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. J Wood Sci 53:108–113 CrossRefGoogle Scholar
  82. Nemli G, Kalaycıoğlu H, Alp T (2001) Suitability of date palm (Phoenix dactyliferia) branches for particleboard production. Holz Roh- Werkst 59(6):411–412 CrossRefGoogle Scholar
  83. Nemli G, Kirci H, Serdar B, Ay N (2003) Suitability of kiwi (Actinidia sinensis Planch.) prunings for particleboard manufacturing. Ind Crops Prod 17(1):39–46 CrossRefGoogle Scholar
  84. Nemli G, Demirel S, Gümüşkaya E, Aslan M, Acar C (2009) Feasibility of incorporating waste grass clippings (Lolium perenne L.) in particleboard composites. Waste Manag 29(3):1129–1131 PubMedCrossRefGoogle Scholar
  85. Neufeld B (2010) Particleboard and medium density fibreboard in the Pacific Rim and Europe 2009–2013. BIS Shrapnel Business Research and Forecasting, Sydney Google Scholar
  86. Nikvash N, Kraft R, Kharazipour A, Euring M (2010) Comparative properties of bagasse, canola and hemp particle boards. Eur J Wood Prod 68:323–327 CrossRefGoogle Scholar
  87. Noack D, Schwab E (1977) Beziehungen zwischen den Rohstoff-Eigenschaften und den Anforderungen an die Verwendung—Eigenschaften und Verwendung von plattenförmigen Holzwerkstoffen. Holz Roh- Werkst 35:421–429 CrossRefGoogle Scholar
  88. Ntalos GA, Grigoriou AH (2002) Characterization and utilization of vine prunings as a wood substitute for particleboard production. Ind Crops Prod 16:59–68 CrossRefGoogle Scholar
  89. Nzokou P, Kamdem DP (2004) Influence of wood extractives on moisture sorption and wettability of red oak (Quercus rubra), black cherry (Prunus serotina) and red pine (Pinus resinosa). Wood Fiber Sci 36(4):483–492 Google Scholar
  90. Okuda N, Sato M (2006) Water resistance properties of kenaf core binderless boards. J Wood Sci 52:422–428 CrossRefGoogle Scholar
  91. Okuda N, Sato M (2007) Bond durability of kenaf core binderless boards I. Two-cycle accelerated aging boil test. J Wood Sci 53:139–142 CrossRefGoogle Scholar
  92. Okuda N, Sato M (2008) Bond durability of kenaf core binderless boards II. Outdoor exposure test. J Wood Sci 54:36–44 CrossRefGoogle Scholar
  93. Osarenmwinda JO, Nwachukwu JC (2007) Effect of particle size on some properties of rice husk particleboard. Adv Mater Res 18–19:43–48 CrossRefGoogle Scholar
  94. Papadopoulos AN, Traboulay EA (2002) One layer experimental particleboard from coconut chips (Cocos nucifera L.). Holz Roh- Werkst 60:394–396 CrossRefGoogle Scholar
  95. Papadopoulos AN, Hague JRB (2003) The potential for using flax (Linum usitatissimum L.) shiv as a lignocellulosic raw material for particleboard. Ind Crops Prod 17(2):143–147 CrossRefGoogle Scholar
  96. Papadopoulos AN, Hill CAS, Gkaraveli A, Ntalos GA, Karastergiou SP (2004) Bamboo chips (Bambusa vulgaris) as an alternative lignocellulosic raw material for particleboard manufacture. Holz Roh- Werkst 62:36–39 CrossRefGoogle Scholar
  97. Pauls A, Carus M, Piotrowski S, Breuer T, Frölich W, Hau A, Gahle C (2008) Potentialanalyse über alternative heimische und exotische Nachwachsende Rohstoffe für die Holzwerkstoffindustrie in Deutschland. nova-Institut, Hürth Google Scholar
  98. Pedieu R, Riedl B, Pichette A (2008) Measurement of wood and bark particles acidity and their impact on the curing of urea formaldehyde resin during the hot pressing of mixed panels. Holz Roh- Werkst 66:113–117 CrossRefGoogle Scholar
  99. Ramli R, Shaler S, Jamaludin MA (2002) Properties of medium density fibreboard from oil palm empty fruit bunch fibre. J Oil Palm Res 14(2):34–40 Google Scholar
  100. Revankor SR, Nath SK (2005) Particle board from coffee seed husk. In: Forest products special, vol 5. Forest Research Institute, Dehradun, S 5 Google Scholar
  101. Richter C (1993) Neues Verfahren zur Herstellung von Dämmstoffen niedriger Dichte aus Holz und Einjahrespflanzen. Holz Roh- Werkst 51:235–239 CrossRefGoogle Scholar
  102. Ritter N, Kharazipour A (2009) Development of three-layered popcorn based particleboards by a combinition of maize and wood. In: Kharazipour AR, Schöpper C, Müller C, Euring M (Hrsg) Review of forests, wood products and wood biotechnology of Iran and Germany—Part III. Universitätsverlag Göttingen, Göffingen, Google Scholar
  103. Rowell RM (1995) A new generation of composite materials from agro-based fiber. In: Prasad PN, Mark JE, Fai TJ (Hrsg) Polymers and other advanced materials: emerging technologies and business opportunities. In: Proc 3rd int conference on frontiers of polymers and advanced materials, Kuala Lumpur, Malaysia, January 16–20. Google Scholar
  104. Salje E, Stühmeier W (1983) Einfluß von Rohdichte und Sandgehalt auf die Zerspanung von Spanplatten beim Fräsen. Holzzentralblatt 109(135):1912 1930 Google Scholar
  105. Sampathrajan A, Vijayaraghavan NC, Swaminathan KR (1992) Mechanical and thermal properties of particle boards made from farm residues. Bioresour Technol 40:249–251 CrossRefGoogle Scholar
  106. Sauter SL (1996) Developing composites from wheat straw. In: Proc 30th int particleboard/composite materials symposium, Pullman, USA Google Scholar
  107. Schöpper C, Kharazipour A, Bohn C (2009) Production of innovative hemp based three-layered particle boards with reduced raw densities and low formaldehyde emissions. Int J Mater Prod Technol 36(1–4):358–371 CrossRefGoogle Scholar
  108. Schulz T (2007) Faserstoffe aus Weizenstroh als Ersatz für Holzfaserstoffe zur Herstellung von MDF. Holztechnologie 48(1):47–48 Google Scholar
  109. Sellers T, Miller GD, Fuller MJ (1993) Kenaf core as a board raw material. For Prod J 43(7/8):69–71 Google Scholar
  110. Sellers T (2001) Wood adhesive innovations and applications in North America. For Prod J 51(6):12–22 Google Scholar
  111. Tabarsa T, Jahanshahi S, Ashori A (2010) Mechanical and physical properties of wheat straw boards bonded with a tannin modified phenol-formaldehyde adhesive. Compos B Eng. doi: 10.1016/j.compositesb.2010.09.012
  112. Thole V, WeißD (1992) Eignung von Einjahrespflanzen als Zuschlagstoffe für Gipsspanplatten. Holz Roh- Werkst 50:241–252 CrossRefGoogle Scholar
  113. Thole V (2001) Faserplatten aus Palmenresten. Holz Kunstst 4:90–92 Google Scholar
  114. Thole V (2005) Einjahrespflanzen als Rohstoff für MDF—aktueller Stand. MDF Mag 11:38–43 Google Scholar
  115. Torkaman J (2010) Improvement of bondability in rice husk particleboard made with sodium silicate. In: Proc. 2nd int conference on sustainable construction materials and technologies, Ancona, Italy, June 28–30 Google Scholar
  116. Tröger F, Pinke G (1988) Beitrag zur Herstellung PMDI-verleimter Spanplatten mit verschiedenen Strohanteilen. Holz Roh- Werkst 46:389–395 CrossRefGoogle Scholar
  117. Tröger F, Barbu MC, Seemann C (1995) Verstärkung von Miscanthus- und Holzspanplatten mit Flachsfasermatten. Holz Roh- Werkst 53:268 CrossRefGoogle Scholar
  118. Tröger F, Wegener G, Seemann C (1998) Miscanthus and flax as raw material for reinforced particleboards. Ind Crops Prod 8:113–121 CrossRefGoogle Scholar
  119. UNECE/FAO (2010) Forest products annual market review 2009–2010. Geneva Timber and Forest Study Paper 25, United Nations, New York and Geneva Google Scholar
  120. Vick CB (1999) Adhesive bonding of wood materials. In: Wood handbook: wood as an engineering material, gen tech rep FPL-GRT-113, USDA Forest Serv, Forest Prod Lab, Madison Google Scholar
  121. Wagenführ R (1989) Anatomie des Holzes. VEB Fachbuchverlag, Leipzig Google Scholar
  122. Walther T, Kartal SN, Hwang WJ, Umemura K, Kawai S (2007) Strength, decay and termite resistance of oriented kenaf fiberboards. J Wood Sci 53:481–486 CrossRefGoogle Scholar
  123. Wassipaul F, Kail A (1976) Untersuchung des Zusammenhanges zwischen dem Aufbau von Holzwerkstoffen und der Werkzeugabnutzung. Holzforsch Holzverwert 28(3):59–65 Google Scholar
  124. Widyorini R (2005) Self-bonding characterization of non-wood lignocellulosic materials. Dissertation, Kyoto University Google Scholar
  125. Widyorini R, Xu J, Umemura K, Kawai S (2005) Manufacture and properties of binderless particleboard from bagasse. I. Effects of raw material type, storage methods, and manufacturing process. J Wood Sci 51:648–654 CrossRefGoogle Scholar
  126. Winandy JE (2005) Achieving resource sustainability and enhancing economic development through biomass utilization. In: International workshop on prefabricated housing from bamboo based panels, Beijing, China, November 24–25 Google Scholar
  127. Wu J, Gatewood BM (1998) Bleaching of wheat straw, an alternative cellulosic (hard) fiber for potential industrial application. In: Int conference and exhibition of the american association of textile colorist and chemists, Philadelphia, USA, September 22–25 Google Scholar
  128. Xing C, SY Zhang, Deng J (2004) Effect of wood acidity and catalyst on UF resin gel time. Holzforschung 58:406–412 CrossRefGoogle Scholar
  129. Xing C, SY Zhang, Deng J, Wang S (2007) Urea–formaldehyde-resin gel time as affected by the pH value, solid content, and catalyst. J Appl Polym Sci, Appl Polym Symp 103(3):1566–1569 Google Scholar
  130. Xu J, Sugawara R, Widyorini R, Han G, Kawai S (2004) Manufacture and properties of low-density binderless particleboard from kenaf core. J Wood Sci 50:62–67 CrossRefGoogle Scholar
  131. Xu J, Sugawara R, Widyorini R, Kawai S (2005) Properties of kenaf core binderless particleboard reinforced with kenaf bast fiber-woven sheets. J Wood Sci 51:415–420 CrossRefGoogle Scholar
  132. Xu J, Widyorini R, Yamauchi H, Kawai S (2006) Development of binderless fiberboard from kenaf core. J Wood Sci 52(3):236–243 CrossRefGoogle Scholar
  133. Yalinkilic MK, Imamura Y, Takahashi M, Kalaycioglu H, Nemli G, Demirci Z, Ozdemir T (1998) Biological, physical and mechanical properties of particleboard manufactured from waste tea leaves. Int Biodeterior Biodegrad 41:75–84 CrossRefGoogle Scholar
  134. Youngquist JA, English BE, Spelter H, Chow P (1993) Agricultural fibers in composition panels. In: Proc 27th particleboard/composite materials symposium, Pullman, USA, March 30–31, April 1 Google Scholar
  135. Youngquist JA, English BE, Scharmer RC, Chow P, Shook SR (1994) Literature review on use of nonwood plant fibers for building materials and panels. Gen tech rep FPL-GTR-80, USDA Forest Serv, Forest Prod Lab, Madison, S 146 Google Scholar
  136. Youngquist JA, Krzysik AM, English BW, Spelter HN, Chow P (1996) Agricultural fibers for use in building components. In: The use of recycled wood and paper in building applications. Proc No 7286. Forest Research Institute, Madison, Google Scholar
  137. Youngquist JA, Krzysik AM, Chow P, Meimban R (1997) Properties of composite panels. In: Rowell RM, RA Young, Rowell JK (Hrsg) Paper and composites from agro-based resources. CRC Press, Boca Raton, S 446 Google Scholar
  138. Zhang Y, Lu X, Pizzi A, Delmotte L (2003) Verbesserung der Bindung bei Weizenstrohplatten durch Vorbehandlung mit Enzymen. Holz Roh- Werkst 61(1):49–54 CrossRefGoogle Scholar
  139. Zheng Y, Pan Z, Zhang R, Jenkins BM, Blunk S (2007) Particleboard quality characteristics of saline jose tall wheatgrass and chemical treatment effect. Bioresour Technol 98:1304–1310 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Christian Müller
    • 1
    Email author
  • Ulrich Schwarz
    • 1
  • Volker Thole
    • 2
  1. 1.Fachbereich HolztechnikHochschule für nachhaltige Entwicklung Eberswalde (FH)EberswaldeDeutschland
  2. 2.Verfahrenstechnik HolzwerkstoffeFraunhofer-Institut für Holzforschung WKIBraunschweigDeutschland

Personalised recommendations