Advertisement

European Journal of Wood and Wood Products

, Volume 70, Issue 5, pp 565–571 | Cite as

The effect of Na+ montmorillonite (NaMMT) nanoclay on thermal properties of medium density fiberboard (MDF)

  • Reza ZahedsheijaniEmail author
  • Mehdi Faezipour
  • Asghar Tarmian
  • Mohammad Layeghi
  • Hossein Yousefi
Originals Originalarbeiten

Abstract

In this study, the potential use of nanotechnology was evaluated to improve the thermal properties of medium density fiberboard (MDF). For this, Na+ montmorillonite (NaMMT) nanoclay was added to urea formaldehyde resin to produce MDF. In order to characterize the structure of the MDF, X-ray diffraction (XRD) and SEM observation were performed, and the thermal properties were examined using thermogravimetric analysis (TGA), differential thermal analysis (DTA), thermal conductivity test and fire test. Characterization of the MDFs shows that dispersed and exfoliated structures were generated by the hot press. The X-ray diffraction confirmed the suitable exfoliation of NaMMT in the MDFs containing NaMMT. The SEM images of NaMMT-added boards showed a suitable dispersion of NaMMT through the MDF. The results of thermal tests indicated a desirable effect of NaMMT on thermal-oxidative stability and thermal conductivity of MDF.

Keywords

Montmorillonite Differential Thermal Analysis Differential Thermal Analysis Curve Fire Resistance Fire Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Einfluss von Na+ Montmorillonit (NaMMT)-Nanotonerde auf die thermischen Eigenschaften von mitteldichten Faserplatten (MDF)

Zusammenfassung

In dieser Studie wurde eine mögliche Anwendung der Nanotechnologie zur Verbesserung der thermischen Eigenschaften von mitteldichten Faserplatten (MDF) untersucht. Dazu wurde bei der MDF-Herstellung Na+ Montmorillonit (NaMMT)-Nanotonerde dem Harnstoffharz beigemengt. Die Struktur der mitteldichten Faserplatte wurde anhand von Röntgenstrahlbeugung (XRD) und REM-Aufnahmen untersucht und die thermischen Eigenschaften wurden mittels thermogravimetrischer Analyse (TGA), Differenzthermoanalyse (DTA), Wärmeleitfähigkeitsprüfung und Brandprüfung bestimmt. Es zeigte sich, dass beim Heißpressen in der Platte fein verteilte, abgeschieferte Strukturen entstanden. Röntgenstrahlbeugung bestätigte die günstig wirkende Abschieferung von NaMMT in den MDF-Platten. REM-Aufnahmen der Platten mit NaMMT zeigten eine günstig wirkende Verteilung von NaMMT in den Platten. Die Ergebnisse der thermischen Prüfungen bestätigten die gewünschte Wirkung von NaMMT auf die thermisch-oxidative Stabilität und die Wärmeleitfähigkeit der MDF-Platten.

Notes

Acknowledgements

We would like to give special thanks to Professor T. Nishino (Kobe university, Japan) for his kind cooperation in FE-SEM and XRD studies. Tarbiat Modares University of Iran is acknowledged for the SEM and thermal analysis. The authors are also thankful to Hamid Zare, S.M.J. Moosavi and M. Farjollahpour (University of Tehran, Iran) for their general help.

References

  1. Ashori A, Nourbakhsh A (2009) Effects of nanoclay as a reinforcement filler on the physical and mechanical properties of wood-based composite. J Compos Mater 43:1869–1875 CrossRefGoogle Scholar
  2. Bhadeshia HKDH (2002) Thermal analysis technique. University of Cambridge, Materials Science & Metallurgy, UK Google Scholar
  3. Bodzay B, Bocz K, Barkai ZS, Marosi GY (2011) Influence of rheological additives on char formation and fire resistance of intumescent coatings. Polym Degrad Stab 96:355–362 CrossRefGoogle Scholar
  4. Choi YS, Choi MH, Wang KH, Kim SO, Kim YK, Chung IJ (2001) Synthesis of exfoliated PMMA/Na-MMT nanocomposites via soap-free emulsion polymerization. Macromolecules 34:8978–8985 CrossRefGoogle Scholar
  5. Faruk O, Matuana LM (2008) Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Compos Sci Technol 68:2073–2077 CrossRefGoogle Scholar
  6. Hashim R, How LS, Kumar RN, Sulaiman O (2005) Some of the properties of flame retardant medium density fiberboard made from rubberwood and recycled containers containing aluminum trihydroxide. Bioresour Technol 96:1826–1831 PubMedCrossRefGoogle Scholar
  7. Hashim R, Sulaiman O, Kumar RN, Tamyez PF, Murphy RJ, Ali Z (2009) Physical and mechanical properties of flame retardant urea formaldehyde medium density fiberboard. J Mater Process Technol 209:635–640 CrossRefGoogle Scholar
  8. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois Ph (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng 63:100–125 CrossRefGoogle Scholar
  9. Lei H, Du G, Pizzi A, Celzard A (2008) Influence of nanoclay on urea-formaldehyde resins for wood adhesives and its model. J Appl Polym Sci 109:2442–2451 CrossRefGoogle Scholar
  10. Miller SG (2008) Effects of nanoparticle and matrix interface on nanocomposite properties. PhD Thesis, Akron Uni, USA Google Scholar
  11. Qin H, Zhang S, Zhao C, Hu G, Yang M (2005) Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer 46:8386–8395 CrossRefGoogle Scholar
  12. See S, Zhang ZhY, Dhakal HN, Richardson MOW (2009) Nanomechanical behavior and thermal degradation of nanoclays and supernanoclays enhanced marine gelcoat system. Mater Eng Innov 1:21–39 CrossRefGoogle Scholar
  13. Song L, Hu Y, Tang Y, Zhang R, Chen Z, Fan W (2005) Study on the properties of flame retardant polyurethane/organoclay nanocomposite. Polym Degrad Stab 87:111–116 CrossRefGoogle Scholar
  14. Snyder R (2007) Characterization of nanoclay nanocomposites. In: Composites & polycon, Tampa, Florida, USA Google Scholar
  15. Urbanczyk L, Calberg C, Benali S, Bourbigot S, Espuche E, Gouanve F, Dubois Ph, Germain A, Jerome Ch, Detrembleur Ch, Alexandre M (2008) Poly (caprolactone)/clay masterbatches prepared in supercritical CO2 as efficient clay delamination promoters in poly (styrene-co-acrylonitrile). J Mater Chem 18:4623–4630 CrossRefGoogle Scholar
  16. White RH (1982) Wood-based paneling as thermal barriers. Research Paper FPL 408:pp 12 Google Scholar
  17. Wood panels (2008) http://woodpanels.org.au/publications/datasheets/8.asp. Accessed February 2008
  18. Zhang X, Loo LS (2009) Synthesis and thermal oxidative degradation of a novel amorphous polyamide/nanoclay nanocomposite. Polymer 50:2643–2654 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Reza Zahedsheijani
    • 1
    Email author
  • Mehdi Faezipour
    • 1
  • Asghar Tarmian
    • 1
  • Mohammad Layeghi
    • 1
  • Hossein Yousefi
    • 1
  1. 1.Department of Wood and Paper Science & Technology, Faculty of Natural ResourcesUniversity of TehranKarajIran

Personalised recommendations