European Journal of Wood and Wood Products

, Volume 70, Issue 5, pp 545–549 | Cite as

Improved absorption characteristics of thermally modified beech veneer produced by plasma treatment

  • Georg Avramidis
  • Holger Militz
  • István Avar
  • Wolfgang ViölEmail author
  • Arndt Wolkenhauer
Originals Originalarbeiten


In this study the effect of an atmospheric pressure plasma treatment by a dielectric barrier discharge (DBD) on the wettability and absorption characteristics of thermally modified beech veneer is investigated. A common immersion test using water and melamine solution has been conducted and showed improved wettability and liquid uptake after plasma treatment. Determination of the weight percent gain (WPG) confirmed increased melamine content after plasma treatment.


Plasma Treatment Melamine Dielectric Barrier Discharge Electrode Array Immersion Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Verbesserte Absorptionscharakteristiken von thermisch behandeltem Buchenholzfurnier nach einer Plasmabehandlung


In dieser Arbeit wird der Effekt eines Plasmas unter Atmosphärendruck nach dem Prinzip der dielektrisch behinderten Entladung auf die Benetzungs- und Absorptionscharakteristik von thermisch behandelten Buchenholzfurnieren untersucht. Ein einfacher Immersionstest unter Verwendung von Wasser und Melaminlösung wurde ausgeführt und zeigte eine verbesserte Benetzung und Flüssigkeitsaufnahme nach einer Plasmabehandlung. Die Bestimmung des WPG (weight percent gain) bestätigte einen erhöhten Melamingehalt nach einer Plasmabehandlung.



Financial support from the Federal Ministry of Economics and Technology (BMWi, KF 2411802WZ9) is gratefully acknowledged. Many thanks are due to OWI GmbH for providing the veneers and melamine powder.


  1. Asandulesa M, Topala I, Dumitrascu N (2010) Effect of helium DBD plasma treatment on the surface of wood samples. Holzforschung 64:223–227 CrossRefGoogle Scholar
  2. Avramidis G, Nothnick E, Militz H, Viöl W, Wolkenhauer A (2010a) Accelerated curing of PVAc adhesive on plasma-treated wood veneers. Eur J Wood Prod 69(2):329–332 CrossRefGoogle Scholar
  3. Avramidis G, Tebbe B, Nothnick E, Militz H, Viöl W, Wolkenhauer A (2010b) Wood veneer modification by atmospheric pressure plasma treatment for improved absorption characteristics. In: Hill CAS, Militz H, Anderson B (eds) Proceedings of the fifth European conference on wood modification, Latvian State Institute of Wood Chemistry, Riga, pp 365–372 Google Scholar
  4. Blanchard V, Blanchet P, Riedl B (2009) Surface energy modification by radiofrequency inductive and capacitive plasma at low pressures on sugar maple: an exploratory study. Wood Fiber Sci 41:245–254 Google Scholar
  5. Boonstra MJ, Rijsdijk JF, Sander C, Kegel E, Tjeerdsma B, Militz H, van Acker J, Stevens M (2006a) Microstructural and physical aspects of heat treated wood. Part 1. Softwoods. Maderas, Cienc Tecnol 8:193–208 CrossRefGoogle Scholar
  6. Boonstra MJ, Rijsdijk JF, Sander C, Kegel E, Tjeerdsma B, Militz H, van Acker J, Stevens M (2006b) Microstructural and physical aspects of heat treated wood. Part 2. Hardwoods. Maderas, Cienc Tecnol 8:209–217 CrossRefGoogle Scholar
  7. Donath S, Militz H, Mai C (2004) Wood modification with alkoxysilanes. Wood Sci Technol 38:555–566 CrossRefGoogle Scholar
  8. Ellis WD, Rowell RM (1984) Reaction of isocyanates with southern pine wood to improve dimensional stability and decay resistance. Wood Fiber Sci 16:349–356 Google Scholar
  9. Gerardin P, Petric M, Petrissans M, Lambert J, Ehrhrardt JJ (2007) Evolution of wood surface free energy after heat treatment. Polym Degrad Stab 92:653–657 CrossRefGoogle Scholar
  10. Gindl W, Gupta HS (2002) Cell-wall hardness and Young’s modulus of melamine-modified spruce wood by nano-indentation. Composites, Part A, Appl Sci Manuf 33:1141–1145 CrossRefGoogle Scholar
  11. Hansmann C, Deka M, Wimmer R, Gindl W (2006) Artificial weathering of wood surfaces modified by melamine formaldehyde resins. Holz Roh- Werkst 64:198–203 CrossRefGoogle Scholar
  12. Hippler R, Pfau S, Schmidt M, Schoenbach KH (eds) (2001) Low temperature plasma physics. Wiley-VCH, Berlin Google Scholar
  13. Inagaki N (1996) Plasma surface modification and plasma polymerization. CRS Press, Boca Raton Google Scholar
  14. Jamali A, Evans PD (2010) Etching of wood surfaces by glow discharge plasma. Wood Sci Technol 45(1):169–182 CrossRefGoogle Scholar
  15. Klarhöfer L, Frerichs M, Maus-Friedrichs W, Kempter V, Viöl W (2005) Investigation of pure and plasma treated spruce with surface analytical techniques. In: Militz H, Hill CAS (eds) The second European conference on wood modification (ECWM2). University of Göttingen, Göttingen, pp 339–345 Google Scholar
  16. Klarhöfer L, Viöl W, Maus-Friedrichs W (2010) Electron spectroscopy on plasma treated lignin and cellulose. Holzforschung 64:331–336 CrossRefGoogle Scholar
  17. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics and industrial applications. Plasma Chem Plasma Process 23:1–46 CrossRefGoogle Scholar
  18. Lecoq E, Clement F, Panousis E, Loiseau JF, Held B, Castetbon A, Guimon C (2008) Pinus pinaster surface treatment realized in spatial and temporal afterglow DBD conditions. Eur Phys J Appl Phys 42:47–53 CrossRefGoogle Scholar
  19. Lukowsky D (2002) Influence of the formaldehyde content of waterbased melamine formaldehyde resins on physical properties of Scots pine impregnated therewith. Holz Roh- Werkst 60:349–355 CrossRefGoogle Scholar
  20. Militz H (1993) Treatment of timber with water soluble dimethylol resins to improve their dimensional stability and durability. Wood Sci Technol 27:347–355 CrossRefGoogle Scholar
  21. Odrásková M, Rahel J, Zahoranova A, Tino R, Cernak M (2008) Plasma activation of wood surface by diffuse coplanar surface barrier discharge. Plasma Chem Plasma Process 28:203–211 CrossRefGoogle Scholar
  22. Petric M, Knehtl B, Krause A, Militz H, Pavlic M, Petrissans M, Rapp A, Tomazic M, Welzbacher C, Geradin P (2007) Wettability of waterborne coatings on chemically and thermally modified pine wood. J Coat Technol Res 2:203–206 CrossRefGoogle Scholar
  23. Petrissans M, Geradin P, El Bakali I, Serraj M (2003) Wettability of heat-treated wood. Holzforschung 57:301–307 CrossRefGoogle Scholar
  24. Scholz G, Van den Bulcke J, Boone M, Zauer M, Bäucker E, Van Acker J, Militz H (2010) Investigation on wax-impregnated wood. Part 1. Microscopic observations and 2D X-ray imaging of distinct wax types. Holzforschung 64:581–585 CrossRefGoogle Scholar
  25. Setoyama K (1996) Surface modification of wood by plasma treatment and plasma polymerization. J Photopolym Sci Technol 9:243–250 CrossRefGoogle Scholar
  26. Shukla SR, Kamden DP (2010) Swelling of polyvynil alcohol, melamine, and urethane treated southern pine wood. Eur J Wood Prod 68:161–165 CrossRefGoogle Scholar
  27. Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh- Werkst 63:102–111 CrossRefGoogle Scholar
  28. Wolkenhauer A (2009) Plasma treatment of wood and wood-based materials by dielectric barrier discharge at atmospheric pressure. Sierke Verlag, Göttingen Google Scholar
  29. Wolkenhauer A, Avramidis G, Militz H, Viöl W (2007) Wood modification by atmospheric pressure plasma treatment. In: Hill CAS, Jones D, Militz H, Ormondroyd GA (eds) Proceedings of the third European conference on wood modification. University of Wales, Bangor, pp 271–274 Google Scholar
  30. Wolkenhauer A, Avramidis G, Militz H, Viöl W (2008a) Plasma treatment of wood-plastic composites to enhance their adhesion properties. J Adhes Sci Technol 22:2025–2037 CrossRefGoogle Scholar
  31. Wolkenhauer A, Avramidis G, Militz H, Viöl W (2008b) Plasma treatment of heat treated beech wood—investigation on surface energy. Holzforschung 62:472–474 CrossRefGoogle Scholar
  32. Wolkenhauer A, Avramidis G, Hauswald E, Militz H, Viöl W (2009) Sanding vs. plasma treatment of aged wood: a comparison with respect to surface energy. Int J Adhes Adhes 29:18–22 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Georg Avramidis
    • 1
  • Holger Militz
    • 2
  • István Avar
    • 3
  • Wolfgang Viöl
    • 1
    Email author
  • Arndt Wolkenhauer
    • 1
  1. 1.Department of Sciences and TechnologyUniversity of Applied Sciences and ArtsGöttingenGermany
  2. 2.Wood Biology and Wood ProductsGeorg-August-University of GöttingenGöttingenGermany
  3. 3.OWI GmbHLohr a. MainGermany

Personalised recommendations