Skip to main content
Log in

The termiticidal properties of superhydrophobic wood surfaces treated with ZnO nanorods

Termitizide Eigenschaften superhydrophober Holzoberflächen, die mit ZnO-Nanopartikeln imprägniert wurden

  • Brief Originals Kurzoriginalia
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

ZnO is a cost-effective and more environmentally friendly wood preservative than other metallic-based formulations. ZnO-stearate treatment imparts superhydrophobicity to wood surfaces, thereby providing triple protection to wood products, i.e., superhydrophobicity, inhibition to insects and microorganisms, and UV radiation protection. The objective of this study was to evaluate ZnO-stearate hydrophobic treatments of southern pine sapwood for resistance to Formosan subterranean termites. The data indicated that ZnO-stearate superhydrophobic treatment of southern pine wood samples received excellent mean visual ratings and mean weight loss values. The mean termite mortality was moderate. Unidentified fibril-like substances were found on the wood surfaces that were damaged by the termites.

Zusammenfassung

ZnO ist ein kostengünstiges und umweltfreundlicheres Holzschutzmittel als viele andere Rezepturen auf Metallbasis. Eine Imprägnierung mit ZnO-Stearat verleiht der Holzoberfläche Superhydrophobizität mit Dreifachschutz, d.h. Superhydrophobizität, Wirkung gegen Insekten und Mikroorganismen sowie Schutz vor UV-Strahlung. Ziel dieser Studie war es, die Resistenz von mit ZnO-Stearat behandeltem Southern Pine Splintholz gegen die Formosan Bodentermiten zu untersuchen. Die Ergebnisse zeigten, dass der mittlere visuell festgestellte Zerstörungsgrad und der mittlere Masseverlust der mit ZnO-Stearat superhydrophobisch behandelten Southern Pine Splintholzproben sehr gering waren. Die mittlere Termitensterblichkeitsrate war mäßig. Auf den durch Termiten befallenen Holzoberflächen wurden unbekannte fibrillenartige Substanzen gefunden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3

Similar content being viewed by others

References

  • American Wood Protection Association (AWPA). 2009. Standard method for laboratory evaluation to determine resistance to subterranean termites (E1-09). Book of standards. AWPA, Birmingham

    Google Scholar 

  • Artus GRJ, Jung S, Zimmermann J, Gautschi HP, Marquardt K, Seeger S (2006) Silicone nanofilments and their application as superhydrophobic coatings. Adv Mater 20:2758–2762

    Article  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  • Choong ET, Shupe TF, Yong C (1998) Effect of steaming and hot-water soaking on extractive distribution and moisture diffusivity in southern pine during drying. Wood Fiber Sci 31(2):143–150

    Google Scholar 

  • Clausen CA, Wang VW, Arango RA, Green F III (2009) Feasibility of nanozinc oxide as a wood preservative. In: Proc of American wood protection association, vol 105, pp 255–260

    Google Scholar 

  • Clausen CA (2010) Wood handbook, Chapt 14: Biodeterioration of wood. Gen techn rep FPL-GTR-190, USDA Forest Serv, Forest Prods Lab, Madison, WI

  • Evans P (2003) Emerging technologies in wood protection. Forest Prod J 50(1):14–22

    Google Scholar 

  • Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu B (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860

    Article  CAS  Google Scholar 

  • Gao XF, Jiang L (2004) Biophysics: Water-repellent legs of water striders. Nature 432(7013):36

    Article  PubMed  CAS  Google Scholar 

  • Green F, Arango RA (2007) Wood protection by commercial silver formulations against Eastern subterranean termites. International Research Group on Wood Protection. Stockholm, Sweden. IRG/WP/07-304-22, 6 p

  • Hou X, Zhou F, Yu B, Liu W (2007) Superhydrophobic zinc oxide surface by differential etching and hydrophobic modification. Mater Sci Eng A 452–457:732–736

    Google Scholar 

  • Joye NM Jr, Proveaux AT, Lawrence RV (1969) Naval stores products from ponderosa pine stumps. Ind Eng Chem Prod Res Dev 8(3):297–299

    Article  CAS  Google Scholar 

  • Kartal SN, Green F III, Clausen CA (2009) Do the unique properties of nanometals affect leachability or efficacy against fungi and termites? Int Biodeterior Biodegrad 63:490–495

    Article  CAS  Google Scholar 

  • Lafuma A, Quere D (2003) Superhydrophobic states. Nat Mater 2003(2):457–460

    Article  Google Scholar 

  • Larson PR, Kretschmann DE, Clark A III, Isebrands JG (2001) Formation and properties of juvenile wood in southern pine. Gen techn rep FPL-GTR-129. USDA Forest Serv, Forest Products Laboratory, Madison, WI, 46 pp

  • Ledwith D, Pillai SC, Watson GW, Kelly JM (2004) Microwave induced preparation of a-axis oriented double-ended needle-shaped ZnO microparticles. Chem Comm 20:2294–2295

    Article  PubMed  Google Scholar 

  • Lee W, Jin MK, Yoo WC, Lee JK (2004) Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 20(18):7665–7669

    Article  PubMed  CAS  Google Scholar 

  • Li W, Reinboudt D, Crego-Calama M (2007) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36(8):1350–1368

    Article  PubMed  Google Scholar 

  • Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24:5585–5590

    Article  PubMed  CAS  Google Scholar 

  • Nakajima A, Hashimoto K, Watanabe T (2001) Recent studies on super-hydrophobic films. Monatsh Chem 132(1):31–41

    CAS  Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surface. Ann Bot 79:667–677

    Article  Google Scholar 

  • Statistical Package for the Social Sciences (SPSS) for Windows (2006). Chicago, IL

  • Steel RGD, Torrie JH (1980) Principle and procedures of statistics—a biometrical approach, 2nd edn. McGraw-Hill, New York, 633 pp

    Google Scholar 

  • Sun TL, Feng L, Gao XF, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38(8):644–652

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida T, Kitajima S (1990) Preparation of uniform zinc oxide particles by homogeneous precipitation from zinc sulfate and nitrate solutions. Chem Lett 19:1769–1772

    Article  Google Scholar 

  • Wang C, Piao C, Lucas C (2011) Synthesis and characterization of superhydrophobic wood surfaces. J Appl Polym Sci 119(3):1667–1672

    Article  CAS  Google Scholar 

  • Wu X, Zheng L, Wu D (2005) Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route. Langmuir 21:2665–2667

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This paper (2011-241-5586) is published with the approval of the Director of the Louisiana Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Piao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shupe, T., Piao, C. & Lucas, C. The termiticidal properties of superhydrophobic wood surfaces treated with ZnO nanorods. Eur. J. Wood Prod. 70, 531–535 (2012). https://doi.org/10.1007/s00107-011-0563-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-011-0563-x

Keywords

Navigation