Advertisement

European Journal of Wood and Wood Products

, Volume 69, Issue 4, pp 545–552 | Cite as

Low temperature fluidized wood chip drying with monoterpene analysis

  • Bridget N. BeroEmail author
  • Alarick Reiboldt
  • Ward Davis
  • Natalie Bedard
  • Evan Russell
Originals Originalarbeiten

Abstract

This paper describes the drying of ponderosa pine wood chips at low (20°C and 50°C) temperatures using a bench-scale batch pulsed fluidizer to evaluate both volatile pine oils (monoterpenes) and moisture losses during drying. Ten monoterpenes were measured; anecdotal information on inter-tree differences in monoterpene composition indicate that while overall total monoterpene composition is similar for each tree, the ratios of α-pinene, β-pinene, δ-3-carene and limonene differ between individual trees. Results of the drying studies show normal drying curves at 20°C and 50°C; at the air flow rates used, a 20% final moisture content resulted after approximately 45 and 25 min for the two temperatures, respectively. Oil content data were highly variable but indicated that at 50°C, oils start to volatize by approximately 10 min of drying. At 20°C, oil content does not appear to change over drying time.

Keywords

Moisture Content Terpene Monoterpene Wood Chip Bornyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Monoterpenanalyse bei Niedertemperatur-Wirbelschichttrocknung von Holzspänen

Zusammenfassung

Beschrieben wird die Trocknung von Gelbkiefer-Holzspänen bei niedrigen Temperaturen (20°C und 50°C) in einer Labor-Versuchseinrichtung mit pulsierender Wirbelschicht um die flüchtigen Pinienöle (Monoterpene) und den Feuchteverlauf beim Trocknen zu bestimmen. Es wurden zehn Monoterpene gemessen. Im Einzelnen zeigte sich, dass zwar die Monoterpenzusammensetzung der einzelnen Bäume im Großen und Ganzen ähnlich ist, sich jedoch die Verhältnisse von α-Pinen, β-Pinen, δ-3-Caren und Limonen von Baum zu Baum unterscheiden. Die Ergebnisse der Trocknungsversuche weisen normale Trocknungsverläufe bei 20°C und 50°C auf. Bei den verwendeten Luftdurchsätzen wurde bei den beiden Temperaturen eine Endfeuchte von 20 % nach ungefähr 45 bzw. 25 Min. erreicht. Der Ölgehalt variierte stark und es zeigte sich, dass sich die Öle bei 50°C nach ca. 10-minütiger Trocknung zu verflüchtigen begannen, wogegen sich der Ölgehalt bei der Trocknung bei 20°C nicht zu verändern scheint.

Notes

Acknowledgements

The authors thank Dr. Armando McDonald of the University of Idaho Forest Products Laboratory for his assistance with the analytical portion of this work. This research was supported in part by funds provided by the Rocky Mountain Research Station, Forest Service, U.S. Department of Agriculture in Flagstaff, Arizona. The authors also acknowledge Forest Energy Corporation of Show Low, Arizona, which has provided impetus for further drying-related work with this technology.

References

  1. Adams RP (2004) Identification of essential oils components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing, Carol Stream Google Scholar
  2. Banerjee S, Otwell L, Newton L (1995) Release of water and volatile organics from wood drying. Environ Sci Technol 29(4):1135–1136 CrossRefGoogle Scholar
  3. Banerjee S, Su W, Wild MP (1998) Wet line extension reduces VOCs from softwood drying. Environ Sci Technol 32:1303–1307 CrossRefGoogle Scholar
  4. Beakler BW, Blankenhor PR, Brown NR, Scholl MS, Stover LR (2007) Quantification of the VOCs released during kiln-drying red oak and white oak lumber. For Prod J 57(11):27–32 Google Scholar
  5. da Fonseca MMR, de Carvalho CCCR (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142 PubMedCrossRefGoogle Scholar
  6. Du G, Siqun W, Zhiyong C (2005) Microwave drying of wood strands. Dry Technol, 23(12):2421–2436 CrossRefGoogle Scholar
  7. Jinescu G (2004) The Romanian school contributions on the oscillations influence in the intensification of process transfer in gas fluidized bed. In: Drying 2004: P 14th Int Dry Symposium, Sao Paulo Brazil, Aug 22–25, pp A:272–A:279 Google Scholar
  8. Kelkar VM, Geils BW, Becker DR, Overby ST, Neary DG (2006) How to recover more value from small pine trees: essential oils and resins. Biomass Bioenerg 30:316–320 CrossRefGoogle Scholar
  9. Krauze-Baranowska M, Mardarowicz M, Wiwart M, Poblocka L, Dynowska M (2002) Antifungal activity of the essential oils from some species of the genus Pinus. Z Naturforsch 57(5–6):478–82 Google Scholar
  10. Latta RG, Linhart YB, Snyder MA, Lundquist L (2003) Patterns of variation and correlation in the monoterpene composition of xylem oleoresin within populations of ponderosa pine. Biochem Syst Ecol 31:451–465 CrossRefGoogle Scholar
  11. Lavery MR, Milota MR (2000) VOC emissions from Douglas-Fir: comparing a commercial and a laboratory kiln. For Prod J 50(7/8):39–47 Google Scholar
  12. Lavery MR, Milota MR (2001) Measurement of VOC emissions from ponderosa pine lumber using commercial and laboratory kilns. Dry Technol 19(9):2151–2173 CrossRefGoogle Scholar
  13. Makowski M, Ohlemeyer M (2006) Impact of drying temperature and pressing factor on VOC emissions from OSB made of Scots Pine. Holzforschung 60(4):417–22 CrossRefGoogle Scholar
  14. Manninen AM, Pasanen P, Holopainen JK (2002) Comparing the VOC emissions between air-dried and heat-treated Scots pine wood. Atmos Environ 36(11):1763–1768 CrossRefGoogle Scholar
  15. McDonald AG, Dare PH, Gifford JS, Steward Riley DS, Simpson I (2004) Air emissions from timber drying: high temperature drying and re-dry of CCA treated timber. Holz Roh- Werkst 62:291–302 CrossRefGoogle Scholar
  16. Milota MR (2003) HAP and VOC emissions from white fir lumber dried at high and conventional temperatures. For Prod J 53(3):60–65 Google Scholar
  17. Milota MR, Wilson JB (1990) Analysis of the fluidized bed drying of wood particles. Wood Fiber Sci 22(2):193–203 Google Scholar
  18. Nitz M, Taranto OP (2007) Drying of beans in a pulsed fluid bed dryer: drying kinetics, fluid-dynamic study and comparisons with conventional fluidization. J Food Eng 80(1):249–256 CrossRefGoogle Scholar
  19. Nugent JE (1997) Multi pass, continuous drying apparatus. USA Patent #5634281, Jun 3 Google Scholar
  20. O’Hagan M, Smith RD (1986) Fluid bed hog fuel dryer. USA Patent #4 628:833, Dec 16 Google Scholar
  21. Motta Lima OC, Stenzel M, Pereira NC (2004) Drying curves generalization in conductive/convective drying of cellulose. In: Proc 14th int dry symposium, Sao Paulo, Brazil, Aug 22–25, pp B:1319–B:1326 Google Scholar
  22. Perry RH, Green D (1984) Perry’s chemical engineers handbook, 6th edn. McGraw-Hill, Singapore Google Scholar
  23. Reyes A, Vega R, Garcia G (2008) Drying sawdust in a pulsed fluidized bed. Dry Technol 26:476–486 CrossRefGoogle Scholar
  24. Rice RW, Erich MS (2006) Estimated VOC losses during the drying of six eastern hardwood species. For Prod J 56(10):48–51 Google Scholar
  25. Rupar K, Sanati M (2003) The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium. Biomass Bioenerg 25(6):615–622 CrossRefGoogle Scholar
  26. Simon JA (1990) Essential oils and culinary herbs. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland Google Scholar
  27. Smith RH (2000) Xylem monoterpines of pine: distribution, variation, genetics, function. General Technical Report #PSW-GTR-177, USDA-FS, Pacific Southwest Research Station, Albany, CA, p 454 Google Scholar
  28. Thomas MG, Schuman DR (1993) Income opportunities in special forest products: self-help suggestions for rural entrepreneurs. Agriculture Information Bulletin 666, USDA-FS, Washington, DC, p 206 Google Scholar
  29. USDA-FS (2003) A strategic assessment of forest biomass and fuel reduction treatments in Western States. Washington, DC. http://www.fs.fed.us/research/infocenter.html. Accessed Jan 2005
  30. Van Loo S, Koppejan J (2008) The handbook of biomass combustion and co-firing. Earthscan, London Google Scholar
  31. Wu J, Milota MR (1999) Effect of temperature and humidity on total hydrocarbon emissions from Douglas-Fir lumber. For Prod J 49(6):52–60 Google Scholar
  32. Zbicinski I, Strumillo C, Kwapinska M, Smucerowicz I (2001) Calculations of the pulse combustion drying system. Energ Convers Manage 42:1909–1918 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bridget N. Bero
    • 1
    Email author
  • Alarick Reiboldt
    • 1
  • Ward Davis
    • 2
  • Natalie Bedard
    • 1
  • Evan Russell
    • 1
  1. 1.Department of Civil Engineering, Construction Management and Environmental EngineeringNorthern Arizona UniversityFlagstaffUSA
  2. 2.HPI Consultants CorporationFlagstaffUSA

Personalised recommendations