European Journal of Wood and Wood Products

, Volume 69, Issue 4, pp 587–595 | Cite as

Temperature and gas evolution during large scale outside storage of wood chips

  • F. FerreroEmail author
  • M. Malow
  • M. Noll
Originals Originalarbeiten


The temperature and gas concentrations in a newly established pine-wood debris pile of 20 m×15 m×6 m in dimensions (approximately 400 tons of fresh weight material) were monitored for 150 days. Temperature was measured at ten different positions within the pile, while concentrations of CO2, O2, CO and CH4 were taken at four different representative locations. The pile was characterized by a strong temperature increase within the first 10–12 days of storage. Results of the gas analysis in this period suggest that the temperature increase was caused by microbial processes. In particular, reduced oxygen concentration and almost complete absence of methane indicate mainly aerobic respiration processes. Effects of weather conditions on the temperature/gas distribution and time evolution are also discussed in the paper.


Wood Chip Carbon Dioxide Concentration Carbon Dioxide Content Carbon Monoxide Concentration Wood Pile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Temperatur- und Gasmessungen während der Lagerung einer Holzhalde im industriellen Maßstab


Temperatur und Konzentration von CO2, O2, CO und CH4 wurden innerhalb einer neu aufgeschütteten Holzhalde mit einer Größe von 20 m×15 m×6 m (ca. 400 Tonnen des Frischgewichtes) über eine Lagerungsdauer von 150 Tagen gemessen. Die Temperatur wurde an zehn Positionen innerhalb der Halde aufgenommen, während die Gaskonzentrationen an vier repräsentativen Positionen nach Haldenaufbau gemessen wurden. Die Halde wies eine sehr starke Temperaturerhöhung in den ersten 10–12 Tagen der Lagerung auf. Die Ergebnisse der Gasanalysen während dieses Zeitraums sind indikativ dafür, dass mikrobielle Prozesse innerhalb der Halde die Haldenerwärmung verursacht haben. Insbesondere die geringe Sauerstoffkonzentration und die fast komplette Abwesenheit von Methan weisen auf eine hohe aerobe, mikrobielle Atmungsaktivität hin. Der Einfluss der Wetterlage auf die zeitliche Entwicklung und auf die Verteilung der Temperatur und der Gaskonzentrationen innerhalb der Halde werden in dieser Studie diskutiert.



The authors would like to thank the German Federal Ministry of Education and Research for funding the project “Fire Prevention during Storage of Biomass Fuels” (FKZ: 01LS05079) within the scope of the research initiative “Klimazwei”. The authors take the responsibility of the contents of this publication.


  1. Bergman Ö, Nilsson T (1971) Studies on outside storage of sawmill chips. Research notes of the Department of Forest Products, Royal College of Forestry, Stockholm Google Scholar
  2. CEN 14961:2005 Solid biofuels—fuel specification and classes, standard of the European Committee for Standardization (CEN) Google Scholar
  3. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640 PubMedGoogle Scholar
  4. Ernstson ML, Rasmuson A (1993) Mathematical modelling of transport processes and degradation reactions in piles of forest fuel material. Fuel 72:1515–1524 CrossRefGoogle Scholar
  5. Fengel D, Wegener G (1984) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin Google Scholar
  6. Ferrero F, Malow M, Berger A, Krause U (2007) Modelling the coupled heat and mass transfer during fires in stored biomass, coal and recycling deposits. In: Proceedings of the 1st European COMSOL conference, Grenoble, France, 23–24 October 2007 Google Scholar
  7. Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135 CrossRefGoogle Scholar
  8. Liang C, Das KC, McClendon RW (2003) The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour Technol 86:131–137 PubMedCrossRefGoogle Scholar
  9. Nitsch J (2007) Ausbaustrategie Erneuerbare Energien, Aktualisierung und Neubewertung bis zu den Jahren 2020 und 2030 mit Ausblick bis 2050. Pilot study on behalf of the Federal Environment Ministry for the Environment, Nature Conservation and Nuclear Safety (in German) Google Scholar
  10. Noll M, Naumann A, Ferrero F, Malow M (2010) Exothermic processes in industrial-scale piles of chipped pine-wood are linked to shifts in gamma-, alphaproteobacterial and fungal ascomycete communities. Int Biodet Biodeg 64:629–637 CrossRefGoogle Scholar
  11. Scholz V, Idler C (2005) Energieverlust und Schimmelpilzentwicklung bei der Lagerung von Feldholz-Hackgut. Reports on Agro-Engineering, vol 39. Leibniz-Institut für Agrartechnik, Potsdam-Bornim (in German) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.BAM Federal Institute for Materials Research and TestingBerlinGermany
  2. 2.Division 74 “Hygiene and Microbiology”Federal Institute for Risk Assessment (BfR)BerlinGermany

Personalised recommendations