European Journal of Wood and Wood Products

, Volume 69, Issue 4, pp 619–631 | Cite as

Biological damage function models for durability assessments of wood and wood-based products in building envelopes

  • Mostafa NofalEmail author
  • Kumar Kumaran
Originals Originalarbeiten


A durability assessment system that links an advanced computer model for structural and hygrothermal analysis with damage functions is currently being developed. The computational system has different modules that calculate the different structural and hygrothermal responses of wall systems. Outputs of these modules are input to the module of damage function models to calculate damage, performance and service-life of building envelopes. Details of biological damage functions implemented in the damage function module of IRC’s durability assessment system are presented. The biological damage functions trace deterioration in wood materials subjected to hygrothermal loads that favor fungal growth. The developments of the models are based on recent biological experimental data from the literature. Equations to calculate various parameters in the model are presented and the application of the developed models is demonstrated using air leakage of warm and humid indoor air in a typical wood-frame construction in Ottawa.


Damage Function Wood Material Mold Growth Oriented Strand Board Building Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Biologische Schadensakkumulationsmodelle zur Bestimmung der Dauerhaftigkeit von Holz und Holzwerkstoffen in Gebäudehüllen


Derzeit wird ein System zur Beurteilung der Dauerhaftigkeit entwickelt, das ein fortschrittliches Computermodell für die statische und hygrothermische Berechnung mit Schadensfunktionen verbindet. Das Computersystem besteht aus verschiedenen Modulen, mit denen die verschiedenen statischen und hygrothermischen Eigenschaften eines Wandsystems berechnet werden. Die Ergebnisse dieser Module dienen als Eingangsgrößen für das Schadensakkumulationsmodell, mit dem die Schädigung und die Lebensdauer von Gebäudehüllen berechnet werden. Die biologischen Schadensfunktionen, die in das Schadensakkumulationsmodell des IRC Systems zur Beurteilung der Dauerhaftigkeit implementiert wurden, werden detailliert beschrieben. Die biologischen Schadensfunktionen bestimmen Schädigungen im Holzmaterial, das Pilzwachstum verursachender Belastung ausgesetzt war. Zur Entwicklung der Modelle werden aktuelle biologische Versuchsdaten aus der Literatur hergenommen. Gleichungen zur Berechnung verschiedener Parameter im Modell werden dargestellt und die Anwendung der entwickelten Modelle wird anhand der Konvektion von warmer und feuchter Innenraumluft durch eine typische Holzrahmenkonstruktion in Ottawa aufgezeigt.


  1. Andersson MA, Nikulin M, Köljalg U, Andersson MC, Rainy F, Reijula K, Hintikka EL, Salkinoja-Salonen M (1997) Bacteria, molds, and toxins in water-damaged building materials. Appl Environ Microbiol 63(2):387–393 PubMedGoogle Scholar
  2. ASHRAE (1995) Heating, ventilating, and air-conditioning applications handbook, SI edn, Chap 3, pp 3.1–3.13 Google Scholar
  3. Brischke C, Rapp AO (2008a) Dose-response relationships between wood moisture content, wood temperature and fungal decay determined for 23 European field test sites. Wood Sci Technol 42(4):507–518 CrossRefGoogle Scholar
  4. Brischke C, Rapp AO (2008b) Influence of wood moisture content and wood temperature on fungal decay in the field: observations in different micro-climates. Wood Sci Technol 42(4):663–677 CrossRefGoogle Scholar
  5. Brischke C, Welzbacher CR, Huckfeldt T (2008) Influence of fungal decay by different basidiomycetes on the structural integrity of Norway spruce wood. Holz Roh- Werkst 66:443–438 CrossRefGoogle Scholar
  6. Clarke JA, Johnstone CM, Kelly NJ, McLean RC, Anderson JA, Rowan NJ, Smith JE (1999) A technique for the prediction of the conditions leading to mould growth in buildings. Build Environ J 34(4):515–521 CrossRefGoogle Scholar
  7. Duncan CG, Lombard FF (1965) Fungi associated with principal decays in wood products in the United States. US Forest Service research paper W0-4, Department of Agriculture, Washington, DC, pp 30 Google Scholar
  8. CEN EN 252 (1989) Field test method for determining the relative protective effectiveness of wood preservatives in ground contact. European Committee for Standardization, Brussels Google Scholar
  9. Foliente GC, Leicester RH, Wang C-H, Mackenzie C, Cole IS (2002) Durability design for wood construction. For Prod J 52(1):10–19 Google Scholar
  10. Fugler D (1996) Molds in finished basements. Final report prepared for the Canadian Mortgage and Housing Corporation (CMHC), Ottawa, pp 1–14 Google Scholar
  11. Hukka A, Viitanen HA (1999) A mathematical model of mold growth in wooden material. Wood Sci Technol 33(6):475–485 CrossRefGoogle Scholar
  12. Leicester RH, Wang C-H, Nguyen M, Foliente GC (2005) Engineering models for biological attack on timber. In: 10th international conference on durability of building materials and components, TT4-217, Lyon, France, 2005, pp 17–2 Google Scholar
  13. Morris P (1998) Understanding biodeterioration of wood in structures. Internal report, Forintek Canada Corp, Vancouver, BC, pp 16 Google Scholar
  14. Nofal M, Kumaran MK (1999) Durability assessments of wood-frame construction using the concept of damage-functions. In: 8th international conference on durability of building materials and components, Vancouver, Canada, 1999 Google Scholar
  15. Ojanen T, Kumaran MK (1992) Thermal performance of the exterior envelopes of buildings V. In: Proceedings of the ASHRAE/DOE/BTECC conference, Clearwater Beach, Florida, pp 491–500 Google Scholar
  16. Ojanen T, Kumaran MK (1996) Effect of air leakage on the hygrothermal behaviour of a residential wall assembly. J Therm Insul Build Envel 19(1):215–227 Google Scholar
  17. Schmidt EL, Hall HJ, Gertjejansen RO, Carll CG, DeGrott RC (1983) Biodeterioration and strength reduction in preservative treated aspen waferboard. For Prod J 33(11/22):45–53 Google Scholar
  18. Sedlbauer K (2002) Prediction of mould growth by hygrothermal calculation. J Build Phys 25(4):321–336 CrossRefGoogle Scholar
  19. Standards Australia (2003) AS 5604: Australian standard-timber-natural durability ratings. Sydney, Australia, pp 1–25 Google Scholar
  20. Viitanen H (1997a) Modeling the time factor in the development of mold fungi—the effect of critical humidity and temperature conditions on pine and spruce sapwood. Int J Biol Chem Phys Technol Wood 51(1):6–14 Google Scholar
  21. Viitanen H (1997b) Modeling the time factor in the development of brown-rot-decay in pine and spruce sapwood—the effect of critical humidity and temperature conditions. Int J Biol Chem Phys Technol Wood 51(2):99–106 Google Scholar
  22. Viitanen H, Bjurman J (1995) Mold growth on wood at fluctuating humidity conditions. Mater Struct J 29(1):27–46 Google Scholar
  23. Viitanen H, Ojanen T (2007) Improved model to predict mold growth in building materials. In: The proceeding of thermal performance of the exterior envelopes of the whole buildings X international conference, paper # 162, ASHREA, pp 1–8 Google Scholar
  24. Viitanen H, Ritschkoff AC (1991) Brown rot decay in wooden constructions: effect of temperature, humidity and moisture. Report No 222, Swedish University of Agricultural Sciences, Departments of Forest Products, pp 57 Google Scholar
  25. White JM (1995) Moldy houses: why they are & why we care. Final report prepared for the Canadian Mortgage and Housing Corporation (CMHC), Report No 1952070.00, Ottawa, pp 66 Google Scholar
  26. White JM (1996) Additional analysis of Wallaceburg data. Final report prepared for the Canadian Mortgage and Housing Corporation (CMHC), Report No 2962056.02, Ottawa, pp 36 Google Scholar
  27. Wilcox WW (1978) Review of literature on the effect of early stages of decay on wood strength. Wood Fiber 9(4):252–257 Google Scholar
  28. Zabel RA, Morrell JJ (1992) Wood microbiology: decay and its prevention. Academic Press, San Diego, p 476 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Building Envelope and Structure Program, Institute for Research in Construction (IRC)National Research Council Canada (NRC)OttawaCanada

Personalised recommendations