Skip to main content
Log in

Wet-pocket classification in Abies lasiocarpa using spectroscopy in the visible and near infrared range

Nasskernbestimmung in der Felsengebirgstanne (Abies lasiocarpa) mittels Spektroskopie im sichtbaren und im Nahinfrarotbereich

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The potential of visible and near infrared (Vis-NIR) spectroscopy to distinguish wet-pockets from normal subalpine fir (Abies lasiocarpa Hook) wood was evaluated. Two specimen classes were used, namely, wood with more than half of the surfaces covered by wet-pockets (WW), and wood completely free of wet-pockets (NW). A partial least square (PLS) regression model was derived and calibrated to predict moisture content ranging from 0 to 210%, and its usefulness for moisture-based sorting of green lumber was assessed. Samples were sorted into the two classes after Vis-NIR scanning via two models: (1) soft independent modeling of class analogy (SIMCA) and (2) PLS discriminant analysis. The SIMCA model using second derivatives and wavelengths spanning 650 to 1150 nm successfully classified 98% of WW and NW in the green state, while it resulted in misclassification of 96% of the specimens after air-drying. The discriminant PLS model using wavelengths spanning 650–1150 nm, correctly classified WW and NW 96% in the green state and 100% after air-drying, respectively. These results clearly demonstrate the applicability of Vis-NIR spectroscopy to discriminate wet-pockets from normal wood.

Zusammenfassung

Untersucht wurde die Möglichkeit, Nasskern von Tannenholz (Abies lasiocarpa Hook) von normalem Holz mittels Spektroskopie im sichtbaren und im Nahinfrarotbereich (Vis-NIR) zu unterscheiden. Zwei Gruppen von Prüfkörpern wurden untersucht: Holz mit über 50 % Nasskern an der Oberfläche (WW) und Holz ohne Nasskern (NW). Zur Bestimmung des Feuchtegehaltes im Bereich 0 bis 210 % wurde ein partielles Regressionsmodell (PLS) hergeleitet und kalibriert sowie dessen Anwendbarkeit zur Sortierung von frischem Schnittholz nach der Holzfeuchte beurteilt. Nach der Vis-NIR-Prüfung wurden die Proben mittels zweier verschiedener Diskriminanzanalysen (SIMCA, PLS) in die zwei Gruppen eingeteilt. Mit dem SIMCA-Modell, das zwei Ableitungen und Wellenlängen im Bereich von 650 bis 1150 nm verwendet, konnten 98 % WW und NW im frischem Zustand richtig zugeordnet werden, wohingegen nach der Lufttrocknung 96 % falsch klassifiziert wurden. Das PLS-Modell mit Wellenlängen im Bereich 650 bis 1150 nm klassifizierte im frischen Zustand 96 % WW und NW richtig und nach Lufttrocknung 100 % richtig. Diese Ergebnisse belegen deutlich die Anwendbarkeit der Vis-NIR-Spektroskopie zur Unterscheidung zwischen Nasskern und normalem Holz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6

Similar content being viewed by others

References

  • Adedipe EO, Dawson-Andoh B (2008) Predicting moisture content of yellow-poplar (Liriodendron tulipifera L.) veneer using near infrared spectroscopy. For Prod J 56(4):28–33

    Google Scholar 

  • Barker N, Rayens W (2003) Partial least squares for discrimination. J Chemom 17:166–173

    Article  CAS  Google Scholar 

  • Bauch J, Höll J, Endeward R (1975) Some aspects of wetwood formation in fir. Holzforschung 29:198–205

    Article  CAS  Google Scholar 

  • Cai L (2005) Determination of diffusion coefficients for sub-alpine fir. Wood Sci Technol 39:153–162

    Article  CAS  Google Scholar 

  • Flaete PO, Haartveit EY (2004) Non-destructive prediction of decay resistance of Pinus sylvestris heartwood by near infrared spectroscopy. Scand J For Res 19(Suppl 5):55–63

    Article  Google Scholar 

  • Geladi P (1988) Notes on the history and nature of partial least squares (PLS) modeling. J Chemom 2:231–246

    Article  Google Scholar 

  • Gierlinger N, Schwanniger M, Hinterstoisser B, Wimmer R (2002) Rapid determination of heartwood extractives in Larix sp. by means of Fourier transform near infrared spectroscopy. J Near Infrared Spectrosc 10:203–214

    Article  CAS  Google Scholar 

  • Gierlinger N, Jacques D, Schwanninger M, Wimmer R, Hinterstoisser B, Pâques LE (2003) Rapid prediction of natural durability of larch heartwood using Fourier transform near-infrared spectroscopy. Can J For Res 33(9):1727–1736

    Article  Google Scholar 

  • Heraud P, Bayden RW, Beardall J, McNaughton D (2006) Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. J Chemom 20:193–197

    Article  CAS  Google Scholar 

  • Hoffmeyer P, Pedersen JG (1995) Evaluation of density and strength of Norway spruce wood by near infrared reflectance spectroscopy. Holz Roh- Werkst 53:165–170

    Article  Google Scholar 

  • Karttunen K, Leinonen A, Sarén M-P (2008) A survey of moisture distribution in two sets of Scots pine logs by NIR-spectroscopy. Holzforschung 62:435–440

    Article  CAS  Google Scholar 

  • Kelley SS, Rials TG, Groom LR, So C-L (2004) Use of near infrared spectroscopy to predict the mechanical properties of six softwoods. Holzforschung 58:252–260

    Article  CAS  Google Scholar 

  • Kozlik CJ, Ward JC (1981) Properties and kiln-drying characteristics of young-growth western hemlock dimension lumber. For Prod J 31(6):45–53

    Google Scholar 

  • Mackay JFK (1975) Properties of northern aspen discolored wood related to drying problems. Wood Fiber 6(4):319–326

    Google Scholar 

  • Poke FS, Raymond CA (2006) Predicting extractives, lignin, and cellulose contents using near infrared spectroscopy on solid wood in Eucalyptus globules using near infrared reflectance analysis. J Wood Chem Technol 26:187–199

    Article  CAS  Google Scholar 

  • Poke FS, Wright JK, Raymond CA (2004) Predicting extractives and lignin contents in Eucalyptus globules using near infrared reflectance analysis. J Wood Chem Technol 24:55–67

    Article  CAS  Google Scholar 

  • Ross RJ, Ward JC, TenWolde A (1994) Stress wave nondestructive evaluation of wetwood. For Prod J 44(7/8):79–83

    Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least square procedures. Anal Chem 36(8):1627–1639

    Article  CAS  Google Scholar 

  • Schink B, Ward JC (1984) Microaerobic and anaerobic bacterial activities involved in formation of wetwood and discoloured wood. IAWA Bull New Ser 5(2):105–109

    Google Scholar 

  • Schneider MH, Zhou L (1989) Characterization of wet-wood from four balsam fir trees. Wood Fiber Sci 21:1–16

    Google Scholar 

  • Schroeder HA, Kozlik CJ (1972) The characterization of wetwood in western hemlock (Tsuga heterophylla). Wood Sci Technol 6(2):85–94

    Article  Google Scholar 

  • Simpson W (1991) Dry kiln operator’s manual, forest products laboratory. Madison, Wisconsin, pp 274

    Google Scholar 

  • Taylor AM, Freitag C, Cadot E, Morrell JJ (2008) Potential of near infrared spectroscopy to assess hot-water-soluble extractive content and decay resistance of a tropical hardwood. Holz Roh- Werkst 66:107–111

    Article  CAS  Google Scholar 

  • Thygesen LG, Lundqvist SO (2000a) NIR measurement of moisture content in wood under unstable temperature conditions. Part 1. Thermal effects in near infrared spectra of wood. J Near Infrared Spectrosc 8:183–189

    Article  CAS  Google Scholar 

  • Thygesen LG, Lundqvist SO (2000b) NIR measurement of moisture content in wood under unstable temperature conditions. Part 2. Handling temperature fluctuations. J Near Infrared Spectrosc 8:191–199

    Article  CAS  Google Scholar 

  • Tsuchikawa S, Yamato K, Inoue K (2003) Discriminant analysis of wood-based materials using near-infrared spectroscopy. J Wood Sci 49:275–280

    Article  Google Scholar 

  • Ward JC (1986) The effect of wetwood on lumber drying times and rates: an exploratory evaluation with longitudinal gas permeability. Wood Fibre Sci 18(2):288–307

    Google Scholar 

  • Ward JC, Groom D (1983) Bacterial oak: drying problems. For Prod J 33(10):57–65

    Google Scholar 

  • Ward JC, Zeikus JG (1980) Bacteriological, chemical and physical properties of wetwood in living trees. In: Bauch J (ed) Natural variations of wetwood in living properties. Mitt. Bundesforschungsanst, vol 131. Forest Holzwirtsch, Hamburg, pp 133–165

    Google Scholar 

  • Watanabe K, Hart F, Mansfield SD, Avramidis S (2010) Detection of wet-pockets on the surface of Tsuga heterophylla (Raf) Sarg by near infrared (NIR) spectroscopy. Holzforschung 64:55–60

    Article  CAS  Google Scholar 

  • Williams PC, Sobering DC (1993) Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J Near Infrared Spectrosc 1:25–32

    Article  CAS  Google Scholar 

  • Wold S (1976) Pattern recognition by means of disjoint principal components models. Pattern Recognit 8:127–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Avramidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Mansfield, S.D. & Avramidis, S. Wet-pocket classification in Abies lasiocarpa using spectroscopy in the visible and near infrared range. Eur. J. Wood Prod. 70, 61–67 (2012). https://doi.org/10.1007/s00107-010-0490-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-010-0490-2

Keywords

Navigation