Skip to main content
Log in

Apparatus for viscoelastic thermal compression of wood

Gerät zur viskoelastischen thermischen Verdichtung von Holz

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Viscoelastic Thermal Compression (VTC) of wood is a treatment which greatly improves material properties by means of densification with mechanical compression perpendicular to the grain. VTC is similar to other wood densification processes, but is designed for thin lamina and employs dynamic temperature and steam pressure conditions. A device was constructed that is capable of producing VTC wood. Details of the construction and operation of the VTC device are presented. The device consists of a pressurized chamber with variable volume. Wood density may be modified from the initial density of the virgin wood up to approximately 1400 kg/m3. Control of steam pressure and temperature insures that the wood cell walls are not fractured during the process. The device is designed for batch operation and may be adapted to a conventional laboratory hot-press. An example operating schedule is described, but other procedures are possible within the design parameters of the device.

Zusammenfassung

Viskoelastische thermische Verdichtung (Viscoelastic Thermal Compression – VTC) ist ein Verfahren, das die Materialeigenschaften von Holz mittels Verdichtung quer zur Faserrichtung stark verbessert. Das VTC Verfahren ähnelt anderen Holzverdichtungsverfahren, wurde jedoch für dünne Holzbrettchen entwickelt und nutzt wechselnde Temperatur- und Druckbedingungen. Entwickelt wurde ein Gerät zur Produktion von VTC Holz, dessen Einzelheiten der Konstruktion und des Betriebes hier vorgestellt werden. Das Gerät besteht aus einem Druckbehälter mit veränderbarem Volumen. Dieses Gerät kann Holz ausgehend von der Ausgangsdichte bis zu einer Dichte von 1400 kg/m3 verdichten. Die Steuerung des Dampfdruckes und der Temperatur gewährleistet, dass die Zellwände des Holzes während der Behandlung nicht zerstört werden. Das VTC Gerät wurde für den diskontinuierlichen Betrieb entwickelt und kann in eine Laborheißpresse eingebaut werden. Ein Beispiel eines Betriebsplanes ist hier beschrieben. Das Gerät kann jedoch auch unter Nutzung anderer Systemgrößen betrieben werden, solange die Maximalwerte des Gerätes nicht überschritten werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6

Similar content being viewed by others

References

  • Gabrielli C, Kamke FA (2008) Treatment of chemically modified wood with VTC process to improve dimensional stability. For Prod J 58(12):82–86

    CAS  Google Scholar 

  • Geimer RL, Kwon JH (1999) Flakeboard thickness swelling. Part II. Fundamental response of board properties to steam injection pressing. Wood Fiber Sci 31(1):15–27

    CAS  Google Scholar 

  • Hsu WE, Schwald W, Schwald J, JA Shields (1988) Chemical and physical changes required for producing dimensionally stable wood-based composites. Part I: Steam pretreatment. Wood Sci Technol 22:281–289

    Article  CAS  Google Scholar 

  • Inoue M, Norimoto M, Tanahashi M, Rowell RM (1993) Steam or heat fixation of compressed wood. Wood Fiber Sci 25(3):224–235

    CAS  Google Scholar 

  • Inoue M, Sekino N, Morooka T, Norimoto M (1996) Dimensional stabilization of wood composites by steaming I. Fixation of compressed wood by pre-steaming. In: Proceedings from the third pacific rim bio-based composites symposium, Kyoto, Japan, pp 240–248

  • Jarck W (2009) System and method for the manufacture of reconstituted wood products. US Patent No. 7,537,031 B2

  • Kamke FA (2006) Densified radiata pine for structural composites. MADERAS: Cie Tecnol J 8(2):83–92

    Google Scholar 

  • Kamke FA, Kultikova EV, Lenth CA (2000) Viscoelastic thermal compression of wood. In Proceedings of the 5th pacific-rim bio-based composites symp, December 10–13, 2000, Canberra, Australia, pp 292–302

  • Kamke FA, Rathi V (2009) Modified hybrid poplar for structural composites. In: Proceedings of the 4th European conference on wood modification, Stockholm, Sweden, April 27–29, 2009, pp 397–400

  • Kamke FA, Rautkari L (2009) Modified wood veneer for structural applications. In: Proceedings of the 4th international symposium on veneer processing and products, May 24–27, 2009, Espoo, Finland, pp 207–212

  • Kamke FA Sizemore H III (2008) Viscoelastic thermal compression of wood. US Patent No 7,404,422 B2, July 29, 2008

  • Kawai S, Wang Q, Sasaki H, Tanahashi M (1992) Production of compressed laminated veneer lumber by steam pressing. In: Proceedings of the pacific rim bio-based composites symposium, pp 121–128

  • Kutnar A, Kamke FA, Sernek M (2008) Mechanical properties of densified VTC wood relevant for structural composites. Holz Roh- Werkst 66(6):439–446

    Article  CAS  Google Scholar 

  • Kutnar A, Kamke FA, Sernek M (2009) Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci Technol 43:57–68

    Article  CAS  Google Scholar 

  • Navi P, Girardet F (2000) Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54:287–293

    Article  CAS  Google Scholar 

  • Tanahashi M, Inoue M, Fukada S, Ota C, Kimoto S (1994) Wood treating method and apparatus. US Patent 5,343,913

Download references

Acknowledgements

Funding for this work was provided by USDA Cooperative State Research, Education and Extension Service, National Research Initiative Grant # 2006-35504-17444, and the JELD-WEN Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick A. Kamke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamke, F.A., Rathi, V.M. Apparatus for viscoelastic thermal compression of wood. Eur. J. Wood Prod. 69, 483–487 (2011). https://doi.org/10.1007/s00107-010-0461-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-010-0461-7

Keywords

Navigation