Skip to main content
Log in

Structural performance of rounded dovetail connections: experimental and numerical investigations

Tragverhalten von Schwalbenschwanz-Zapfenanschlüssen: experimentelle und numerische Untersuchungen

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Rounded Dovetail Connections (RDC) are a relatively new wood-to-wood connection concept that, despite the lack of design guidance in standards, has become popular in timber construction due to the widespread of modern milling machinery. Because of the anisotropic nature of wood and the complex stress-strain state in RDC, the question of their dimensioning is very complex. Experimental and numerical investigations were carried out on full scale RDC used to connect two timber members as joist to beam connections subjected to quasi-static shear loading. The influence of two geometric parameters was investigated: the dovetail height (varied between 109 and 189 mm) and the flange angle (varied between 5 and 20°). Both, serviceability and ultimate limit states were studied using analysis of variance. It was found that the joint capacity (i) depends on the dovetail height, with an optimum of approximately 2/3 of the beam height and (ii) can be considered almost independent of the flange angle. The development and implementation of a numerical model for the design process of RDC was examined and good agreement between experimental and numerical load deformation curves validated the model, thus making it suitable for developing a method to predict RDC capacity. The paper proposes a probabilistic method to predict the capacity of RDC taking into account the scale sensitivity of the material strength, which is modelled using Weibull statistics, and considers not only the magnitude of the stress fields, but also the volume over which these stress peaks act. The proposed method has immediate actionable application for the improvement of RDC design.

Zusammenfassung

Schwalbenschwanz-Zapfenanschlüsse (SSZ) sind eine zimmermannsmäßige Methode für die Verbindung von Haupt- und Nebenträgern, die aufgrund der modernen CNC-Verarbeitungstechnologie im Holzbau populär geworden ist. Wegen der Anisotropie von Holz und des komplexen Spannungszustands in SSZ, ist die Frage ihrer Bemessung sehr kompliziert. Im vorliegenden Beitrag wird über experimentelle und numerische Untersuchungen zum Tragverhalten von SSZ unter quasi-statischer Kurzzeitbelastung berichtet. Der Einfluss von zwei geometrischen Parametern wurde untersucht: der Schwalbenschwanzzapfenhöhe (im Bereich zwischen 109 und 189 mm) und des Flanschwinkels (im Bereich zwischen 5 und 20°). Die Tragfähigkeit hängt (i) von der Schwalbenschwanzzapfenhöhe ab, mit einem Optimum von ungefähr 2/3 der Balkenhöhe und (ii) ist nahezu unabhängig vom Flanschwinkel. Ein numerisches Modell für die Dimensionierung von SSZ wurde entwickelt und durch die gute Übereinstimmung zwischen den experimentellen und numerischen Last-Verformungskurven validiert. Das Modell bildet die Grundlage für eine neue Methode zur Abschätzung der Tragfähigkeit von SSZ. Das vorgeschlagene probabilistische Konzept berücksichtigt den Größeneffekt in der Materialfestigkeit, modelliert unter Verwendung der Weibull-Verteilung, und betrachtet nicht nur die Größe der Spannungen sondern auch das Volumen, in dem diese auftreten. Die vorgeschlagene Methode hat unmittelbare Anwendung für die Verbesserung der Dimensionierung von Schwalbenschwanz-Zapfenanschlüssen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8
Fig. 9 Abb. 9

Similar content being viewed by others

References

  • Anastas H, Tannert T, Lam F, Barrett JD (2008) Effect of manufacturing on the quality of rounded dovetail joints. In: Proc conference COST E53, Delft, The Netherlands

  • Ansys (2006) Release 10.0 documentation for ANSYS. http://www.ansys.com

  • ASTM-D143 (2002) Standards test methods for small clear specimens of timber. Annual book of ASTM standards. Vol. 04.10 wood. ASTM International, West Conshohocken, USA

  • Barrett JD (1974) Effect of size on tension perpendicular-to-grain strength of Douglas-Fir. Wood Fiber 6(2):126–143

    Google Scholar 

  • Barrett JD, Lau W (1994) Canadian lumber properties. Canadian Wood Council, Ottawa

    Google Scholar 

  • Barrett JD, Lam F, Nakajima S (2001) Material strength properties for Canadian species used in Japanese post and beam construction. In: Proc CIB-W18, Venice, Italy, p 34-6-1

  • Bažant ZP (2005) Scaling of structural strength, 2nd edn. Elsevier, London

    Google Scholar 

  • Bobacz D (2002) In CNC-Technik gefertigte zimmermannsmäßige Verbindungsmittel-Untersuchung des Schwalbenschwanzzapfens (in German). Diplomarbeit Universität für Bodenkultur. Vienna, Austria

  • Bohannan B (1966) Effect of size on bending strength of wood members. Research paper FPL 56, Forest Products Laboratory, Madison, USA

  • Clouston P, Lam F, Barrett JD (1998) Incorporating size effects in the Tsai-Wu strength theory for Douglas-fir laminated veneer. Wood Sci Technol 32(3):215–226

    CAS  Google Scholar 

  • Colling F (1986) Einfluss des Volumes und der Spannungsverteilung auf die Festigkeit eines Rechteckträgers. Holz Roh- Werkst 44(4):121–125 (in German)

    Article  Google Scholar 

  • DIB Deutsches Institut für Bautechnik (2007) Allgemeine bauaufsichtliche Zulassung Z-9.1-649. Dovetec Schwalbenschwanzzapfen-Verbindung in Bauteilen (in German)

  • Dietsch P (2005) Development of a finite-element model for parameter studies of a dovetail connection. Diploma thesis, Technical University Munich, Germany

  • Eberhardsteiner J (2002) Mechanisches Verhalten von Fichtenholz – Experimentelle Bestimmung der biaxialen Festigkeitseigenschaften. Springer, Vienna (in German)

    Google Scholar 

  • EN-26891 (1991) Timber structures, joints made with mechanical fasteners, general principles for the determination of strength and deformation characteristics

  • Faucher B, Tyson WR (1988) On the determination of Weibull parameters. J Mater Sci Lett 7(11):1199–1203

    Article  Google Scholar 

  • Foschi RO, Barrett JD (1976) Longitudinal shear strength of Douglas-Fir. Can J Civ Eng 3(2):198–208

    Article  Google Scholar 

  • Green DW, Winandy JE, Kretschmann DE (1999) Mechanical properties of wood. In: Wood handbook—wood as an engineering material. Forest Products Laboratory, Madison

    Google Scholar 

  • Grosse M, Rautenstrauch K (2004) Numerical modelling of timber and fasteners used in timber-concrete-composite constructions. In: Proc CIB-W18, Edinburgh, Scotland, p 37-7-16

  • Hemmer K (1984) Versagensarten des Holzes der Weisstanne unter mehrachsiger Beanspruchung. Dissertation, Universität Karlsruhe, Germany (in German)

  • Hochstrate M (2000) Untersuchungen zum Tragverhalten von CNC gefertigten Schwalbenschwanzverbindungen. Diplomarbeit, FH Hildesheim/Holzminden/Göttingen, Hildesheim, Germany (in German)

  • Kasal B, Leichti RJ (2005) State of the art in multiaxial phenomenological failure criteria for wood members. Prog Struct Eng Mater 7(1):3–13

    Article  Google Scholar 

  • Kreuzinger H, Spengler R (1999) Zum Tragverhalten von maschinell abgebundenen Zapfenverbindungen aus Konstruktionsvollholz zwischen Haupt- und Nebenträger. Untersuchungsbericht LKI 7313, Technical University Munich, Germany (in German)

  • Larsen HJ, Riberholt H (1981) Strength of glued laminated beams. Institute of Building Technology and Structural Engineering, Technical report 8110, Aalborg University, Denmark

  • McKenzie WM, Karpovich H (1968) The frictional behaviour of wood. Wood Sci Technol 2(2):139–152

    Article  Google Scholar 

  • Montgomery DC, Runger GC (2003) Applied statistics and probability for engineers, 3rd edn. Wiley, New York

    Google Scholar 

  • Norris CB (1962) Strength of orthotropic materials subjected to combined stresses. Report No 1816, Forest Products Laboratory, Madison, USA

  • Smith I, Landis E, Gong M (2003) Fracture and fatigue in wood. Wiley, Chichester

    Google Scholar 

  • Spengler R (1986) Festigkeitsverhalten von Brettelementen aus Fichte unter zweiachsiger Beanspruchung. Report 68098450340, Technical University Munich, Germany (in German)

  • Tannert T (2008) Structural performance of rounded dovetail connections. PhD thesis, University of British Columbia, Vancouver, Canada

  • Tannert T, Lam F (2007) Performance of laminated strand lumber for rounded dovetail connections. For Prod J 57(9):63–67

    Google Scholar 

  • Tannert T, Lam F (2009) Self-tapping screws as reinforcement for rounded dovetail connections. Prog Struct Eng Mater 16(3):374–384

    Google Scholar 

  • Tannert T, Prion H, Lam F (2007) Structural performance of rounded dovetail connections under different loading conditions. Can J Civ Eng 34(12):1600–1605

    Article  Google Scholar 

  • Towse A, Potter KD, Wisnom MR, Adams RD (1999) The sensitivity of a Weibull failure criterion to singularity strength and local geometry variations. Int J Adhes Adhes 19:71–82

    Article  CAS  Google Scholar 

  • Vallée T, Keller T, Fourestey G, Fournier B, Correia JR (2009) Adhesively bonded joints composed of pultruded adherends: considerations at the upper tail of the material strength statistical distribution. Probab Eng Mech 24(3):358–366

    Article  Google Scholar 

  • Weibull W (1939) A statistical theory of strength of materials. Proceedings of the Royal Swedish Institute, Research No 151, Stockholm, Sweden

  • Werner H (2002) Queranschlüsse mit Schwalbenschwanz-Zapfenverbindungen, Vorschlag für die Bemessung. Verband-High-Tech-Abbund im Zimmerhandwerk. Stuttgart, Germany (in German)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Tannert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tannert, T., Lam, F. & Vallée, T. Structural performance of rounded dovetail connections: experimental and numerical investigations. Eur. J. Wood Prod. 69, 471–482 (2011). https://doi.org/10.1007/s00107-010-0459-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-010-0459-1

Keywords

Navigation