European Journal of Wood and Wood Products

, Volume 69, Issue 2, pp 295–301 | Cite as

Softwood heating in radio frequency fields

  • Ken Watanabe
  • Alhassan Abubakari
  • Ciprian Lazarescu
  • Stavros AvramidisEmail author
Originals Originalarbeiten


The aim of this study was to investigate the heating rate of lodgepole pine (Pinus contorta) and western red cedar (Thuja plicata) during radio frequency (RF) heating. Wood specimens (40 × 150 × 1000 mm3) with various moisture content and power density were heated using a laboratory size RF dryer at a frequency of 40.7 MHz, until shell temperature reached 56 °C that is approved as a lethal temperature for phytosanitation. Heating rate was positively correlated with power density and negatively correlated with moisture content. The ratio of heating rate to power density had a negative correlation with moisture content and density in both pine and cedar. The regression lines for moisture content had good coefficient of determination (R 2) values of 0.63 and 0.61 °C m3/min kW (pine), 0.50 and 0.55 °C m3/min kW (red cedar) in both shell and core, respectively. The results demonstrate that the ratio of heating rate to power density is a useful parameter to estimate heating rate. The derived empirical equations made possible the calculation of the heating rate within test conditions applied to this study. The initial temperature rise in shell and core allowed a rather accurate determination of local power density. One dimensional mathematical model to describe the heating rate of wood during RF heating that was derived from the governing heat transfer equation combined with internal heat generation was developed and verified. The model using local power density had high R 2 of 0.71 and 0.93 in both shell and core, respectively, indicating that the model was able to predict heating rate of wood with various moisture content under the known power density distribution.


Power Density Radio Frequency Fiber Saturation Point Dielectric Loss Factor Pinus Contorta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Erhitzung von Nadelholz in Hochfrequenzfeldern


Ziel dieser Studie war es, die Aufheizrate von Lodgepole Kiefer (Pinus contorta) und Western Red Cedar (Thuja plicata) bei Hochfrequenzerwärmung (RF) zu untersuchen. Holzprüfkörper (40×150×1000 mm3) mit unterschiedlicher Holzfeuchte und Leistungsdichte wurden mit einem Labor-Hochfrequenztrockner bei einer Frequenz von 40,7 MHz erwärmt, bis die Oberflächentemperatur 56 °C erreicht hatte. Diese gilt im phytosanitären Bereich als letale Temperatur. Die Aufheizrate korrelierte positiv mit der Leistungsdichte und negativ mit der Holzfeuchte. Das Verhältnis von Aufheizrate zu Leistungsdichte korrelierte sowohl bei Kiefer als auch bei Western Red Cedar negativ mit der Holzfeuchte und der Dichte. Die Regressionsgeraden mit der Holzfeuchte wiesen gute Bestimmtheitsmaße (R 2) von 0,63 und 0,61 °C m3/min kW für Kiefer und 0,50 und 0,55 °C m3/min kW für Red Cedar an der Oberfläche bzw. im inneren Querschnittsbereich auf. Die Ergebnisse zeigen, dass das Verhältnis von Aufheizrate zu Leistungsdichte ein nützlicher Parameter zur Schätzung der Aufheizrate ist. Die hergeleiteten empirischen Gleichungen ermöglichten die Berechnung der Aufheizrate unter den in dieser Studie gewählten Versuchsbedingungen. Der anfängliche Temperaturanstieg im äußeren und inneren Querschnittsbereich erlaubte eine ziemlich genaue Bestimmung der örtlichen Leistungsdichte. Ein eindimensionales mathematisches Modell zur Beschreibung der Aufheizrate von Holz während der Hochfrequenzerwärmung, hergeleitet auf Basis der geltenden Wärmeübergangsgleichung in Verbindung mit der internen Wärmeentwicklung, wurde entwickelt und verifiziert. Das Modell, das die lokale Leistungsdichte verwendet, ergab hohe R 2-Werte von 0,71 und 0,93 im äußeren bzw. inneren Querschnittsbereich. Dies weist darauf hin, dass das Model in der Lage ist, die Aufheizrate von Holz bei unterschiedlicher Holzfeuchte und bei bekannter Leistungsdichteverteilung vorherzusagen.



This work is financially supported by a Strategic Grant from the Natural Sciences and Engineering Research Council of Canada. The input regarding the experimental design technical information about the RF-heating by Dr. Terry Enegren is greatly appreciated.


  1. Antti AL, Perré P (1999) A microwave applicator for on line wood drying: temperature and moisture distribution in wood. Wood Sci Technol 33:123–138 CrossRefGoogle Scholar
  2. Avramidis S, Liu F, Neilson BJ (1994) Radio-frequency/vacuum drying of softwoods: drying of thick western red cedar with constant electrode voltage. For Prod J 44(1):41–47 Google Scholar
  3. Dwinell LD, Avramidis S, Clark JE (1994) Evaluation of a radio frequency/vacuum dryer for eradicating the pinewood nematode in green, sawn wood. For Prod J 44(4):19–24 Google Scholar
  4. Fang F, Ruddick J, Avramidis S (2001) Application of radio-frequency heating to utility poles. Part 3. The use of RF heating to eradicate decay fungi in pole material. For Prod J 51(11/12):51–55 Google Scholar
  5. Fleming MR, Hoover K, Janowiak JJ, Fang Y, Wang X, Liu W, Wang Y, Hang X, Agrawal D, Mastro VC, Lance DR, Shield JE, Roy R (2002) Microwave irradiation of wood packing material to destroy the Asian longhorned beetle. For Prod J 52(11/12):1–7 Google Scholar
  6. Fleming MR, Janowiak JJ, Kearns J, Shield JE, Roy R, Agrawal DK, Bauer LS, Miller DL, Hoover K (2004) Parameters for scale-up of lethal microwave treatment to eradicate cerambycid larvae infesting solid wood packing materials. For Prod J 54(7/8):80–84 Google Scholar
  7. Food and Agriculture Organization (FAO) of the United Nations (2002) Guidelines for regulating wood packaging material in international trade. Inter standards for phytosanitary measures No 13 (ISPM 15), FAO of the United Nations, Rome, S 14 Google Scholar
  8. Henin J, Charron S, Luypaert PJ, Jourez B, Hébert J (2008) Strategy to control the effectiveness of microwave treatment of wood in the framework of the implementation of ISPM 15. For Prod J 58(12):75–81 Google Scholar
  9. Itoh K (2004) Basis for countermeasures against heat and heat calculation technique. Denshizairyo 4:1–8 (in Japanese) Google Scholar
  10. Khalifa AN (2001) Natural convective heat transfer coefficient—a review I. Isolated vertical and horizontal surfaces. Energy Convers Manage 42:491–504 CrossRefGoogle Scholar
  11. Koumoutsakos A, Avramidis S, Hatzikiriakos S (2001a) Radio frequency vacuum drying of wood. I. Mathematical model. Dry Technol 19(1):65–84 CrossRefGoogle Scholar
  12. Koumoutsakos A, Avramidis S, Hatzikiriakos S (2001b) Radio frequency vacuum drying of wood. II. Experimental model evaluation. Dry Technol 19(1):85–98 CrossRefGoogle Scholar
  13. Lazarescu C, Plattner A, Hart F, Breuil C, Avramidis S (2009) Pasteurization of hemlock by radio frequency heating: a preliminary study. For Prod J 59(4):79–83 Google Scholar
  14. Nelson SO, Kraszewski AW (1990) Dielectric properties of materials and measurement techniques. Dry Technol 8(5):1123–1142 CrossRefGoogle Scholar
  15. Nzokou P, Tourtellot S, Kamdem DP (2008) Kiln and microwave heat treatment of logs infested by the emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae). For Prod J 58(7/8):68–72 Google Scholar
  16. Perré P, Turner IW (1997) Microwave drying of softwood in an oversized waveguide: theory and experiment. AIChE J 43(10):2579–2595 CrossRefGoogle Scholar
  17. Perré P, Turner IW (1999) The use of numerical simulation as a cognitive tool for studying the microwave drying of softwood in an over-sized waveguide. Wood Sci Technol 33:445–464 CrossRefGoogle Scholar
  18. Perrings C, Dehnen-Schmutz K, Touza J, Williamson M (2005) How to manage biological invasions under globalization. Trends Eco Evol 20(2):133–136 Google Scholar
  19. Shida S (1993) Utilization and evaluation of exterior wood. III. Two-dimensional difference calculus analysis of a wooden deck’s heat-transfer under solar radiation. Mokuzai Gakkaishi 38(1):13–19 (in Japanese) Google Scholar
  20. Simpson W, TenWolde A (1999) Physical properties and moisture relations of wood (Chap 3). In: Wood handbook: wood as an engineering material. General Technical Report FPL-GTR-113, US Department of Agriculture (USDA), Forest Service, Forest Products Laboratory, Madison, WI Google Scholar
  21. Tkacz BM (2002) Pest risks associated with importing wood to the United States. Can J Plant Pathol 24(2):111–116 CrossRefGoogle Scholar
  22. Torgovnikov GI (1993) Dielectric properties of wood and wood-based material. Springer, Berlin Google Scholar
  23. Tubajika KM, Jonawiak JJ, Mack R, Hoover K (2007) Efficacy of radio frequency treatment and its potential for control of sapstain and wood decay fungi on red oak, poplar, and southern yellow pine wood species. J Wood Sci 53:258–263 CrossRefGoogle Scholar
  24. United Nations Environment Programme (UNEP) (2000) The Montreal protocol on substances that deplete the ozone layer. Ozone Secretariat, UNEP, Nairobi, Kenya. Available via DIALOG. Accessed 17 May 2009
  25. Work TT, MacCullough DG, Cavey JF, Komsa R (2005) Arrival rate of nonindigenous insect species into the United States through foreign trade. Biol Invasions 7(2):323–332 CrossRefGoogle Scholar
  26. Zhou B, Avramidis S (1999) On the loss factor of wood during radio frequency heating. Wood Sci Technol 33:299–310 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ken Watanabe
    • 1
  • Alhassan Abubakari
    • 1
  • Ciprian Lazarescu
    • 1
  • Stavros Avramidis
    • 1
    Email author
  1. 1.Department of Wood ScienceUniversity of British ColumbiaVancouverCanada

Personalised recommendations