Skip to main content

Advertisement

Log in

Compressive behaviour of axially loaded spruce wood under large deformations at different strain rates

Verhalten von axial beanspruchtem Fichtenholz unter Druckbeanspruchung bei großen Deformationen und verschiedenen Dehnraten

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Impact limiting components of packages for the transport of radioactive materials are often designed as wood filled steel constructions. Wood absorbs major part of the impact energy in order to minimise the impact load acting upon the containment. Dynamic impact experiments with wood filled impact limiters showed different crushing mechanisms for axially loaded wood depending on their lateral constraint. Tests on spruce wood samples (Picea abies) were performed in order to clarify the influence of strain rate from static to 30 s−1 on a) compression strength, b) stress at a global strain level of 50%, and c) energy absorption capacity at 50% deformation, including statistical evaluation of the results. Results were as follows: strain rate increase led to significantly higher compression strength, stress and strain energy at a strain level of 50%. Lateral strain restriction had no effect on compression strength; it had a significant effect on stress and strain energy at strain level of 50%. Therefore, the definition of a general yield curve for wood under large deformations is not possible, the yield curve has to be chosen taking into account lateral constraints.

Zusammenfassung

Stoßdämpfende Bauteile von Transportbehältern für radioaktive Stoffe sind oft als holzgefüllte Stahlkonstruktionen konstruiert. Um die Stoßbeanspruchung der dichten Umschließung zu minimieren, absorbiert das Holz einen Großteil der Aufprallenergie. Fallversuche mit stoßdämpfenden Bauteilen haben gezeigt, dass abhängig von seitlicher Dehnungsbehinderung unterschiedliche Kompressionsmechanismen für axial beanspruchtes Holz ersichtlich waren. Versuche mit Fichtenholzproben (Picea abies) wurden durchgeführt, um mit Hilfe statistischer Methoden den Einfluss der Dehnrate von statisch bis 30 s−1 auf (a) Druckfestigkeit, (b) Spannung bei globaler Stauchung von 50 % und (c) Energieabsorption bei einer Stauchung von 50 % zu ermitteln. Folgende Resultate wurden erzielt: Eine höhere Dehnrate führte zu signifikant höheren Druckfestigkeiten, Druckspannungen und Energieabsorptionen bei 50 % Stauchung. Die seitliche Dehnungsbehinderung hatte keinen Einfluss auf die Druckfestigkeit, mit seitlicher Dehnungsbehinderung zeigten sich aber signifikant erhöhte Druckspannungen und Energieabsorptionen bei 50 % Stauchung. Daher ist die Definition einer allgemeingültigen Fließkurve für Holz bei großen Deformationen nicht möglich, die Fließkurve muss unter Einbeziehung der seitlichen Dehnungsbehinderung gewählt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8
Fig. 9 Abb. 9
Fig. 10 Abb. 10
Fig. 11 Abb. 11
Fig. 12 Abb. 12
Fig. 13 Abb. 13

Similar content being viewed by others

References

  • Adalian C, Morlier P (2002) Wood model for the dynamic behavior of wood in multiaxial compression. Holz Roh- Werkst 60:433–439

    Article  Google Scholar 

  • BAM, 2009. BAM Impact testing machine. http://www.bam.de/en/service/publikationen/publikationen_medien/unikale_pruef/upe_711_en_7-2.pdf

  • Bariska M, Kucera LJ (1985) On the fracture morphology in wood. Part 2: Macroscopical deformations upon ultimate axial compression in wood. Wood Sci Technol 19:19–34

    Article  Google Scholar 

  • Bodig J (1966) Stress-strain relationship for wood in transverse compression. J Mater 1(3):645–666

    Google Scholar 

  • Bodig J, Jayne AJ (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold, New York

    Google Scholar 

  • Daudeville L (1999) Fracture in spruce: experiment and numerical analysis by linear and non linear fracture mechanics. Holz Roh- Werkst 57:425–432

    Article  Google Scholar 

  • DeBaise GR, Porter AW, Pentoney RE (1966) Morphological and mechanics of wood fracture. Mater Res Stand 6(10):493–499

    Google Scholar 

  • Dill-Langer G, Cruz Hidalgo R, Kun F, Moreno Y, Aicher S, Herrmann HJ (2003) Size dependency of tension strength in natural fiber composites. Physica A 325:547–560

    Article  Google Scholar 

  • DIN 4074-1 (2008) Sortierung von Holz nach der Tragfähigkeit. Deutsches Institut für Normung e.V., Berlin

    Google Scholar 

  • DIN 52185 (1976) Prüfung von Holz – Bestimmung der Druckfestigkeit parallel zur Faser. Fachnormenausschuss Materialprüfung im Deutschen Institut für Normung e.V., Berlin

    Google Scholar 

  • DIN EN 338 (2008) Bauholz für tragende Zwecke – Festigkeitsklassen. Deutsches Institut für Normung e.V., Berlin

    Google Scholar 

  • Dinwoodie JM (2000) Timber: its nature and behaviour, 2nd edn. E and FN Spon, London

    Book  Google Scholar 

  • Easterling KE, Harrysson R, Gibson LJ, Ashby MF (1982) On the mechanics of balsa and other woods. Proc R Soc A 383:31–41

    Article  Google Scholar 

  • Eberhardsteiner J (2002) Mechanisches Verhalten von Fichtenholz, Experimentelle Bestimmung der biaxialen Festigkeitseigenschaften. Springer, Wien

    Google Scholar 

  • Fengel D, Wegener G (1989) Wood—Cemistry, ultrastructure, reactions. De Gruyter, Berlin

    Google Scholar 

  • Foster CG (1992) Damping and Poisson factor behavior in timber considered as an orthotropic material. Part 1: The loss factor. J Sound Vibr 158(3):405–425

    Article  Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Gindl W (2002) Comparing mechanical properties of normal and compression wood in Norway spruce: the role of lignin in compression parallel to grain. Holzforschung 56:395–401

    Article  CAS  Google Scholar 

  • Gong M, Smith I (2000) Failure of softwood under static compression parallel to grain. J Inst Wood Sci 15(4):204–210

    Google Scholar 

  • Grimsel M (1999) Mechanisches Verhalten von Holz. Dissertation, Techn Univ, Dresden

  • Grosse M (2005) Zur numerischen Simulation des physikalisch nichtlinearen Kurzzeittragverhaltens von Nadelholz am Beispiel von Holz-Beton-Verbundkonstruktionen. Doctoral Thesis, Bauhaus University, Weimar

  • Hamdan S, Dwianto W, Morooka T, Norimoto M (2000) Softening characteristics of wet wood under quasi static loading. Holzforschung 54:557–560

    Article  CAS  Google Scholar 

  • Hermanson JC (1996) The triaxial behaviour of redwood using a new confined compression device, PhD thesis, Graduate School of the University of Wisconsin

  • IAEA (2005) Safety guide TS-R-1. Regulations for the safe transport of radioactive material. IAEA, Vienna

    Google Scholar 

  • IAEA (2008) Safety Guide TS-G-1.1. Advisory material for the IAEA regulations for the safe transport of radioactive material. IAEA, Vienna

    Google Scholar 

  • Kazumi H, Noboru N, Yasuo I (1999) Analysis of the strength data of wood structures on limit states design. I. The influence of probabilistic and statistic method on specified values. J Jpn Wood Res Soc 45(2):103–110

    Google Scholar 

  • Keith CT (1972) The mechanical behaviour of wood in longitudinal compression. Wood Sci 4(4):234–244

    Google Scholar 

  • Kollmann F (1936) Technologie des Holzes und der Holzwerkstoffe. Springer, Berlin

    Google Scholar 

  • Kollmann F (1982) Technologie des Holzes und der Holzwerkstoffe. Springer, Berlin

    Google Scholar 

  • Kufner M (1985) Distribution of wood property values within a Norway spruce log. Holz Roh- Werkst 43(4):123–129

    Article  Google Scholar 

  • Mackenzie-Helnwein P, Eberhardsteiner J, Mang HA (2003) A multisurface plasticity model for clear wood and its application to the finite element analysis of structural details. Comput Mech 31:204–218

    Article  Google Scholar 

  • Forest Products Laboratory (1999) Wood handbook—wood as an engineering material. Gen. Tech. Rep. FPL-GTR-113. Madison, WI, USA

  • Mascia NT, Cramer SM (2000) Effect of moisture content, specific gravity, temperature and number of annual growth rings on redwood elastic constants. In: World Conference on Timber Engineering Whistler Resort, British Columbia, Canada July 31–August 3, 2000

  • Müller U (2003) Effects of wood macro- and micro-structure on selected mechanical properties. Doctoral thesis, University of Natural Resources and Applied Life Sciences, Vienna

  • Musolff A, Müller K, Neumann M, Kadji A, Droste B (2008) Results of full scale CONSTOR V/TC prototype 9 m horizontal drop test. PTSSRAM 19(4):228–232

    CAS  Google Scholar 

  • Niemz P (1993) Physik des Holzes und der Holzwerkstoffe. DRW-Verlag Weinbrenner GmbH & Co., Leinfelden Echterdingen

    Google Scholar 

  • Poulsen JS (1997) Compression in clear wood. Dissertation, University Lyngby

  • Quercetti T, Mueller K, Schubert S (2007) Comparison of experimental results from drop testing of a spent fuel package design using a full scale prototype model and a reduced scale model. In: Proceedings of PATRAM 2007, October 21–26, Miami, USA

  • Reid SR, Peng C (1997) Dynamic uniaxial crushing of wood. Int J Impact Eng 19(5–6):531–570

    Article  Google Scholar 

  • Reiterer A, Stanzl-Tschegg SE (2001) Compressive behaviour of softwood under uniaxial loading at different orientations to the grain. Mech Mat 33:705–715

    Article  Google Scholar 

  • Rice JA (2006) Mathematical statistics and data analysis, 3rd edn. Duxbury Press, Belmont

    Google Scholar 

  • Schneeweiss G (1963) Der Groesseneinfluss im Druckversuch quer zur Faser. Holzforsch Holzverwert 15:125–130

    Google Scholar 

  • Seborg RM, Stamm AJ (1941) The compression of wood. Mech Eng 63:211–213

    Google Scholar 

  • Sigmaplot 10 (2007) Scientific solutions SA, Pully-Lausanne, Switzerland

  • Smith I, Vasic S (2003) Fracture behavior of softwood. Mech Mater 35:803–815

    Article  Google Scholar 

  • Tabarsa T, Chui YH (2001) Stress strain response of wood under radial compression. Part I: Test method and influences of cellular properties. Wood Fiber Sci 33(2):223–232

    CAS  Google Scholar 

  • Vural M, Ravichandran G (2003) Dynamic response and energy dissipation characteristics of balsa wood: experiment and analysis. Int J Solids Struct 40:2147–2170

    Article  Google Scholar 

Download references

Acknowledgements

This work was co-sponsored by German Federal Ministry for Education and Research under contract 02S8274. The authors thank Gesellschaft für Nuklear-Service mbH (GNS) and Mitsubishi Heavy Industries (MHI) for the permission to publish pictures of their drop test objects taken at the BAM drop test facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Neumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, M., Herter, J., Droste, B.O. et al. Compressive behaviour of axially loaded spruce wood under large deformations at different strain rates. Eur. J. Wood Prod. 69, 345–357 (2011). https://doi.org/10.1007/s00107-010-0442-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-010-0442-x

Keywords

Navigation