European Journal of Wood and Wood Products

, Volume 69, Issue 2, pp 247–254 | Cite as

Physical and mechanical properties of gypsum particleboard reinforced with Portland cement

  • Raúl Espinoza-Herrera
  • Alain CloutierEmail author
Originals Originalarbeiten


High thickness swelling, high water absorption and low mechanical properties of gypsum particleboard limit its utilization in building construction. Gypsum particleboard reinforced with Portland cement could result in a product with higher mechanical properties and an acceptable resistance to moisture. Physical and mechanical properties of gypsum-cement particleboards were analyzed for specimens previously conditioned at 20 °C and 60% relative humidity and then soaked in water for 24 hours. The results showed that Portland cement incorporation increased the mechanical resistance of the boards. In the dry state, Portland cement addition generated a modulus of rupture increase ratio of 53% and an internal bond strength increase ratio of 206%. Higher increase ratios were obtained after 24 hours water soaking. An increase ratio of 642% was obtained for the modulus of rupture and 97% for hardness. Furthermore, the addition of Portland cement resulted in a reduction ratio of 21% for water absorption after 2 hours water soaking and 26% after 24 hours water soaking. Moreover, reduction ratios of 43% and 61% in thickness swelling and 33% and 46% in linear variation were observed after 2 and 24 hours water soaking. It can be concluded that Portland cement is a suitable reinforcing material for improving the performance of gypsum particleboard.


Gypsum Portland Cement Jute Fiber Wood Particle Thickness Swell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Physikalische und mechanische Eigenschaften von mit Portlandzement verstärkten gipsgebundenen Spanplatten


Große Dickenquellung, hohe Wasseraufnahme und schlechte mechanische Eigenschaften gipsgebundener Spanplatten schränken deren Verwendung im Bauwesen ein. Gipsgebundene Spanplatten verstärkt mit Portlandzement könnten ein Produkt mit höheren mechanischen Eigenschaften und akzeptabler Feuchtebeständigkeit ergeben. Untersucht wurden die physikalischen und mechanischen Eigenschaften von mit Zement verstärkten Gipsspanplatten anhand von Prüfkörpern, die bei 20 °C und 60% rel. Lf. klimatisiert worden waren und anschließend für 24 Stunden in Wasser gelagert wurden. Die Ergebnisse zeigten, dass die mechanischen Eigenschaften der Platten durch Zugabe von Portlandzement verbessert wurden. Durch Zugabe von Portlandzement wurde die Biegefestigkeit im trockenen Zustand um 53% und die Querzugfestigkeit um 206% erhöht. Nach 24-stündiger Wasserlagerung erhöhten sich die Werte prozentual noch stärker. Die Biegefestigkeit nahm um 642% zu und die Härte um 97%. Des Weiteren verringerte sich durch Zugabe von Portlandzement die Wasseraufnahme nach 2-stündiger Wasserlagerung um 21% und nach 24-stündiger Wasserlagerung um 26%. Außerdem wurden nach 2- und 24-stündiger Wasserlagerung eine Abnahme der Dickenquellung um 43% bzw. 61% und der Quellung in Plattenebene um 33 bzw. 46% beobachtet. Daraus kann geschlossen werden, dass die Zugabe von Portlandzement geeignet ist, die Eigenschaften gipsgebundener Spanplatten zu verbessern.



The authors are very grateful to the National Council for Science and Technology (CONACYT) of Mexico for a Ph.D. scholarship to Raúl Espinoza Herrera.


  1. Adeola FJ, Olajide A (1993) Bending strength and dimensional stability of tropical wood-cement particleboard. Bioresource Technol 44(1):77–79 CrossRefGoogle Scholar
  2. Ahn WY, Moslemi AA (1980) SEM examination of wood-Portland cement bonds. Wood Sci 13(2):77–82 Google Scholar
  3. American Society for Testing and Materials (2002) ASTM D 1037-93 Standard test method for evaluating properties of wood-base fiber and particle panel materials. In: Annual Book of ASTM, vol 04.09. ASTM, Philadelphia Google Scholar
  4. Cramer SM, Friday OM, White R, Sriprutkiat G (2003) Mechanical properties of gypsum board at elevated temperatures. In: Fire and materials 8th international conference, January 27–38, Interscience Communications Limited, San Francisco, CA, London, pp 33–42 Google Scholar
  5. Defo M, Cloutier A, Riedl B (2004) Wood-cement compatibility of some Eastern Canadian woods by isothermal calorimetry. Forest Prod J 54(10):49–56 Google Scholar
  6. Deng Y, Furuno T (2001) Properties of gypsum particleboard reinforced with polypropylene fiber. J Wood Sci 47(4):445–450 CrossRefGoogle Scholar
  7. Deng Y, Furuno T (2002) Study on gypsum-bonded particleboard reinforced with jute fibers. Holzforschung 56(4):440–445 CrossRefGoogle Scholar
  8. Deng Y, Xuan L, Feng Q (2006) Effect of waterproof agent on gypsum particleboard properties. Holzforschung 60(3):318–321 CrossRefGoogle Scholar
  9. Espinoza-Herrera R, Cloutier A (2008) Compatibility of four eastern Canadian woods with gypsum and gypsum-cement binders by isothermal calorimetry. Maderas, Cienc Tecnol 10(3):275–288 CrossRefGoogle Scholar
  10. Frick E (1988) The bison system for the production of wood gypsum particleboards. In: Moslemi AA, Hamel MP (eds) International conference on fiber and particleboard bonded with inorganic binder. Idaho, USA, pp 98–102 Google Scholar
  11. Lee AWC (1985) Bending and thermal insulation properties of cement-bonded cypress excelsior board. For Prod J 35(11/12):57–58 Google Scholar
  12. Lempfer K, Hilbert T, Günzerodt H (1990) Development of gypsum-bonded particleboard manufacture in Europe. For Prod J 40(6):37–40 Google Scholar
  13. Maya GG (1974) Materiales de construcción. McGraw-Hill, México. 212 pp (in Spanish) Google Scholar
  14. Minard H, Garrault S, Regnaud L, Nonat A (2007) Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum. Cem Concr Res 37(10):1418–1426 CrossRefGoogle Scholar
  15. Okino EYA, de Souza MR, Santana MAE, da Alves MV, de Sousa ME, Teixeira DE (2004) Cement-bonded wood particleboard with a mixture of eucalypt and rubberwood. Cem Concr Comp 26(6):729–734 CrossRefGoogle Scholar
  16. Okino EYA, de Souza MR, Santana MAE da Alves MV, de Sousa ME, Teixeira DE (2005) Physico-mechanical properties and decay resistance of Cupressus spp. cement-bonded particleboards. Cem Concr Comp 27(3):333–338 CrossRefGoogle Scholar
  17. Sha W, O’Neill EA, Guo Z (1999) Differential scanning calorimetry study of ordinary Portland cement. Cem Concr Res 29(9):1487–1489 CrossRefGoogle Scholar
  18. Simatupang MH, Lange H, Kasim A, Seddig N (1988) Influence of wood species on the setting of cement and gypsum. In: Moslemi AA, Hamel MP (eds) (1989) International conference on fiber and particleboard bonded with inorganic binder. Idaho, USA, pp 33–42 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Centre de recherche sur le bois, Département des sciences du bois et de la forêtUniversité LavalQuébecCanada

Personalised recommendations