European Journal of Wood and Wood Products

, Volume 69, Issue 2, pp 255–262 | Cite as

Effect of oil heating age on colour and dimensional stability of heat treated Pinus radiata

  • Manoj Kumar Dubey
  • Shusheng PangEmail author
  • John Walker
Originals Originalarbeiten


Pinus radiata specimens with moisture content of 8–11% and dimensions of 90×35×200 mm3 were heat-treated in an oil bath of commercial grade raw linseed oil. The effect of oil aging was investigated under treatment condition of 180°C and 3 hours by using oil that had been preheated for 0, 3, 9, 15, 21, and 27 hours, respectively, before the wood treatment. After treatment using oils of varying ages, wood colour change was examined using a Minolta spectrophotometer through CIE 1976 (L*a*b) system. Water repellent efficiency and anti swelling efficiency in high humidity conditions were measured to determine the stability of the treated wood.

The results show that stability of the treated wood was improved significantly compared to the matched untreated wood but the treated wood tended to be darker. Oil viscosity increased with the heating age resulting in slight decrease in weight percentage gain. Water repellent efficiency was decreased with an increase in heating age of oil. However no significant difference in total colour variation and wood stability (anti swelling efficiency) was observed between specimens treated with oils of varying heating age.


Dimensional Stability Treated Wood Wood Colour Weight Percentage Change Heat Treated Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Anti-swelling Efficiency


Commission internationale de l’éclairage


Weight Percentage Change


Water Repellent Efficiency

Einfluss der Gebrauchsdauer des Ölbades auf die Färbung und Dimensionsstabilität von wärmebehandelter Radiatakiefer


Pinus radiata Prüfkörper mit einer Holzfeuchte von 8–11 % und den Abmessungen 90×35×200 mm3 wurden in einem Ölbad aus Rohleinöl wärmebehandelt. Der Einfluss der Gebrauchsdauer des Ölbades wurde bei einer Wärmebehandlung von 180°C und 3 Stunden untersucht. Das dabei verwendete Öl war vor dieser Behandlung für eine Dauer von 0, 3, 9, 15, 21 und 27 Stunden vorerhitzt worden. Nach der Wärmebehandlung im unterschiedlich lang vorerhitzten Ölbad wurde die Farbveränderung im Holz mit einem Minolta Spektralfotometer anhand des CIE 1976 (L * a * b) Systems untersucht. Zur Bestimmung der Stabilität des behandelten Holzes wurden das Wasserabstoßungsvermögen und das Quellresistenzvermögen bei hoher Umgebungsfeuchte ermittelt.

Die Ergebnisse zeigen, dass die Stabilität des behandelten Holzes im Vergleich zu unbehandeltem Holz signifikant besser war, sich aber tendenziell dunkel verfärbte. Die Ölviskosität nahm mit zunehmender Dauer der Vorerhitzung zu. Dies führte zu einer leicht sinkenden Massenzunahme des Holzes. Das Wasserabstoßungsvermögen nahm mit zunehmender Dauer der Vorerhitzung des Öls ab. Hinsichtlich der Farbveränderung und des Quellresistenzvermögens konnte jedoch kein signifikanter Unterschied zwischen den Prüfkörpern, die mit unterschiedlich lang vorerhitzten Ölen behandelt worden waren, festgestellt werden.


  1. ADOBE (2008) Technical Guide: CIELAB. Accessed 10 December 2008
  2. Ahajji A, Diouf P, Aloui F, Elbakali I, Perrin D, Merlin A, George B (2009) Influence of heat treatment on antioxidant properties and colour stability of beech and spruce wood and their extractives. Wood Sci Technol 43(1):69–83 CrossRefGoogle Scholar
  3. Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5):539–546 CrossRefGoogle Scholar
  4. BS3900 (1986a) D9-Determination of colour and colour difference measurement: Principles. British Standard Institution Google Scholar
  5. BS3900 (1986b) D10-Determination of colour and colour difference measurement: Calculation. British Standard Institution Google Scholar
  6. Buro A (1954) Die Wirkung von Hitzebehandlungen auf die Pilzresistenz von Kiefern- und Buchenholz. Holz Roh-Werkst 12(8):297–304 CrossRefGoogle Scholar
  7. Chemwatch (2007) Chemwatch Material Safety Data Sheet: Linseed Oil, Chemwatch 10701 Google Scholar
  8. Esteves B, Pereira H (2008) Quality assessment of heat-treated wood by NIR spectroscopy. Holz Roh-Werkst 66(5):323–332 CrossRefGoogle Scholar
  9. Esteves B, Velez Marques A, Domingos I, Pereira H (2008) Heat-induced colour changes of pine (Pinus pinaster) and eucalyptus (Eucalyptus globulus) wood. Wood Sci Technol 42(5):369–384 CrossRefGoogle Scholar
  10. Evans P (2003) Emerging technologies in wood protection. For Prod J 53(1):14–21 Google Scholar
  11. FAO (2008) Crop production statistics. Food and Agricultural Organization of United States, Rome Google Scholar
  12. Hapla F, Militz H (2004) Colour measurements and gluability investigation on red heart beech wood (Fagus sylvatica L.). Wood Res 49(4):1–12 Google Scholar
  13. Hill CAS (2006) Wood modification: Chemical, thermal and other processes. Wiley, Chichester CrossRefGoogle Scholar
  14. Hillis WE (1984) High temperature and chemical effects on wood stability. Wood Sci Technol 8:281–293 CrossRefGoogle Scholar
  15. Kamke FA (2006) Densified radiata pine for structural composites. Maderas Cienc Tecnol 8(2):83–92 CrossRefGoogle Scholar
  16. Mabery CF (1923) The heat treatment of China wood and linseed oils. Ind Eng Chem 15(4):365–367 CrossRefGoogle Scholar
  17. Powers PO (1950) Mechanism of the heat bodying of linseed oil. J Polym Sci 5(6):741–743 CrossRefGoogle Scholar
  18. Rowell RM, Banks WB (1985) Water repellency and dimensional stability of wood. General Technical Report, FPL 50, US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI Google Scholar
  19. Sailer M, Rapp AO, Leithoff H (2000a) Improved resistance of Scots pine and spruce by application of an oil-heat treatment. The International Research Group on Wood Preservation. Document IRG/WP 00-40162 Google Scholar
  20. Sailer M, Rapp AO, Leithoff H, Peek RD (2000b) Vergütung von Holz durch Anwendung einer Öl-Hitzebehandlung (Upgrading of wood by application of an oil heat treatment). Holz Roh-Werkst 58(1):15–22 CrossRefGoogle Scholar
  21. Seborg RM, Tarkow H, Stamm AJ (1953) Effect of heat on dimensional stabilization of wood. Jpn For Prod Res Soc 3:59–67 Google Scholar
  22. Sehlstedt-Persson M (2003) Improvement and innovation in wood drying: a major issue for a renewable material. In: Ispas M, Chiriacescu ST (eds) Proceedings of 8th international IUFRO wood drying conference, Brasov, 24–29 August 2003, pp 459–464 Google Scholar
  23. St-Onge V, Fortin Y, Tremblay C (2005) Quality control of thermally modified balsam fir. In: Militz H, Hill C (eds) Proceedings of the second European conference on wood modification: “Wood modification: processes, properties and commercialization”, Göttingen, 6–7 October 2005, CAS, pp 53–56 Google Scholar
  24. Stamm AJ (1956) Thermal degradation of wood and cellulose. Ind Eng Chem 48(3):413–417 CrossRefGoogle Scholar
  25. Stamm AJ (1964) Wood and cellulose science. Ronald Press, New York Google Scholar
  26. Stamm AJ, Burr HK, Kline AA (1946) Staybwood-heat-stabilized wood. Ind Eng Chem 38(6):630–634 CrossRefGoogle Scholar
  27. Sundqvist B (2002) Color response of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula pubescens) subjected to heat treatment in capillary phase. Holz Roh-Werkst 60(2):106–114 CrossRefGoogle Scholar
  28. Sundqvist B, Morén T (2002) The influence of wood polymers and extractives on wood colour induced by hydrothermal treatment. Holz Roh-Werkst 60(5):375–376 CrossRefGoogle Scholar
  29. Syrjänen T, Kangas E (2000) Heat treated timber in Finland. The International Research Group on Wood Preservation. Document IRG/WP 00-40158 Google Scholar
  30. Temiz A, Terziev N, Jacobsen B, Eikenes M (2006) Weathering, water absorption, and durability of silicon, acetylated, and heat-treated wood. J Appl Polym Sci 102(5):4506–4513 Google Scholar
  31. Theander O, Bjurman J, Boutelje JB (1993) Increase in the content of low-molecular carbohydrates at lumber surfaces during drying and correlations with nitrogen content, yellowing and mould growth. Wood Sci Technol 27(5):381–389 CrossRefGoogle Scholar
  32. Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement (Charakterisieren von thermisch behandeltem Holz: Molekulare Ursachen für die Verbesserung der Holzstabilität). Holz Roh-Werkst 56(3):149–153 CrossRefGoogle Scholar
  33. Tjeerdsma BF, Swager P, Horstman BJ, Holleboom BW, Homan WJ (2005) Process development of treatment of wood with modified hot oil. In: Militz H, Hill C (eds) Proceedings of the second European conference on wood modification: “Wood modification: processes, properties and commercialization”, Göttingen, 6–7 October 2005, CAS, pp 186–197 Google Scholar
  34. Tollenaar D, Bolthof H (1946) Viscosity of linseed stand oil at high shearing stresses. Ind Eng Chem 38(8):851–853 CrossRefGoogle Scholar
  35. Treu A, Militz H, Breyne S (2001) Royal-treatment—scientific background and practical application. In: Presentation at COST E22 conference in November in Reinbek Google Scholar
  36. Ulvcrona T, Lindberg H, Bergsten U (2005) Impregnation of Norway spruce (Picea abies L. Karst.) wood by hydrophobic oil and dispersion patterns in different tissues. Forestry 79(1):123–134 CrossRefGoogle Scholar
  37. Wang JY, Cooper PA (2005) Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz Roh-Werkst 63(6):417–422 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Manoj Kumar Dubey
    • 1
  • Shusheng Pang
    • 1
    Email author
  • John Walker
    • 2
  1. 1.Department of Chemical and Process EngineeringUniversity of CanterburyChristchurchNew Zealand
  2. 2.School of ForestryUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations