European Journal of Wood and Wood Products

, Volume 69, Issue 2, pp 287–293 | Cite as

Method for determining liquid water flow in wood during drying using a fluorescent dye tracer

  • Veikko MöttönenEmail author
  • Timo Kärki
  • Ossi Martikka
Originals Originalarbeiten


A novel procedure for the evaluation of liquid water flow during the drying of wood is described. The method is based on the movement of a fluorescent dye solution in liquid water. The addition of the dye solution produced a clear trace inside the wood, the length and direction of which were directly related to the flow of liquid water. A comparison of the results obtained with image analysis using UV illumination and measurement of the reflectance spectrum of wood showed that image analysis is appropriate and accurate enough for the determination of the trace of the dye solution. The trace of the dye solution can be determined from the images of the cross sectional samples of wood in all three main directions.


Timber Injection Point Fiber Saturation Point Wood Extractive Pyranine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Eine Methode zur Bestimmung des Fliessverhaltens von flüssigem Wasser im Holz während des Trocknens unter Anwendung eines fluoreszierenden Farbstofftracers


Ein neues Verfahren zur Bestimmung des Fliessverhaltens von flüssigem Wasser während der Holztrocknung wird beschrieben. Das Verfahren beruht auf der Bewegung von fluoreszierender Farbstofflösung im Wasser. Die Zugabe der Farbstofflösung erzeugte im Holz eine gut sichtbare Spur, dessen Länge und Richtung direkt von der Bewegung des Wassers abhing. Ein Vergleich der Ergebnisse von Bildanalyse und der Messung des Reflektionsspektrums des Holzes zeigte, dass die Bildanalyse zur Erfassung der Spur der Farbstofflösung ausreichend genau ist. Anhand von Bildern von Querschnittsholzproben ist es möglich, die Farbstoffspur in allen drei Hauptrichtungen zu messen.



This study was funded by the Academy of Finland (Project 114329), which is gratefully acknowledged.


  1. Almeida G, Leclerc S, Perre P (2008) NMR imaging of fluid pathways during drainage of softwood in a pressure membrane chamber. Int J Multiph Flow 34:312–321 CrossRefGoogle Scholar
  2. Atkinson TC (1978) Techniques for measuring subsurface flow on hillslopes. In: Kirkby MJ (ed) Hillslope hydrology. Wiley, Chichester, pp 73–120 Google Scholar
  3. Booker RE (1996) New theories for liquid water flow in wood. In: Proceedings of the 5th international IUFRO wood drying conference. Quebec City, Canada, pp 437–445 Google Scholar
  4. chemBLink (2009) [Internet site]. Online database of chemicals from around the world. Available from: Accessed 20 Mar 2009
  5. Choong ET, Peralta PN, Shupe TF (2001) Effect of hardwood vessels on longitudinal moisture diffusion. Wood Fiber Sci 33:159–165 Google Scholar
  6. Crank J (1986) The mathematics of diffusion. Clarendon, Oxford Google Scholar
  7. Duwig C, Delmas P, Müller K, Prado B, Ren K, Morin H, Woodward A (2008) Quantifying fluorescent tracer distribution in allophanic soils to image solute transport. Eur J Soil Sci 59:94–102 Google Scholar
  8. Edwards WRN, Booker RE (1984) Radial variation in the axial conductivity of populus and its significance in heat pulse velocity measurement. J Exp Bot 35(153):551–561 CrossRefGoogle Scholar
  9. Herbst A, Wygoda H-J (2006) Pyranin – ein fluoreszierender Farbstoff für applikationstechnische Versuche. Nachrichtenbl Deut Pflanzenschutzd 58:79–85 Google Scholar
  10. Kawai Y, Kobayashi Y, Norimoto M (2003) Hybrid drying with high-frequency heating and hot air under atmospheric pressure IV: Water movement in Cryptomeria japonica wood during high-frequency heating. J Wood Sci 49:18–21 CrossRefGoogle Scholar
  11. Kreber B, Fernandez M, McDonald AG (1998) Migration of kiln brown stain precursors during the drying of radiata pine sapwood. Holzforschung 52:441–446 CrossRefGoogle Scholar
  12. Longsworth LG (1953) Diffusion measurements, at 25°, of aqueous solutions of amino acids, peptides and sugars. J Am Chem Soc 75:5705–5709 CrossRefGoogle Scholar
  13. McMillen JM (1976) Control of reddish-brown coloration in drying maple sapwood. Res Note FPL-0231. USDA For Serv, For Prod Lab, Madison, WI Google Scholar
  14. Mouchot N, Thiercelin F, Perre P, Zoulalian A (2006) Characterization of diffusionnal transfers of bound water and water vapor in beech and spruce. Maderas, Cienc Tecnol 8:139–147 CrossRefGoogle Scholar
  15. Repola J, Saranpää P, Tarvainen V (2001) Discoloration of Norway spruce and Scots pine timber during drying [Kuusi- ja mäntysahatavaran värinmuutokset kuivauksessa]. Metsäntutkimusl Tied 804:1–29 (In Finnish) Google Scholar
  16. Salin J-G (2006) Modelling of the behaviour of free water in sapwood during drying. Part II. Some simulation results. Wood Mater Sci Eng 1(2):45–51 CrossRefGoogle Scholar
  17. Salin J-G (2008) Almost all wooden pieces have a damaged surface layer–impact on some properties and quality. In: Conference COST E53, Delft, The Netherlands, October 29–30, 2008, pp 135–143 Google Scholar
  18. Scheepers G, Morén T, Rypstra T (2007) Liquid water flow in Pinus radiata during drying. Holz Roh- Werkst 65:275–283 CrossRefGoogle Scholar
  19. Stenudd S (2002) On colour changes during kiln drying of hardwood with special reference to beech and birch. Thesis No 997. Linköping Studies in Science and Technology Google Scholar
  20. Terziev N (1995) Migration of low-molecular sugars and nitrogen in Pinus sylvestris L. during kiln and air drying. Holzforschung 49(6):565–574 CrossRefGoogle Scholar
  21. Wengert EM (1997) Causes and cures for stains in dried lumber: sticker stain, chemical stain, iron stain, and blue stain. In: Prevention of discolorations in hardwood and softwood logs and lumber. Forest Products Society, Madison, pp 12–16 Google Scholar
  22. Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Lappeenranta University of TechnologyLappeenrantaFinland

Personalised recommendations