Advertisement

European Journal of Wood and Wood Products

, Volume 69, Issue 2, pp 183–192 | Cite as

Material properties and nondestructive evaluation of laminated veneer lumber (LVL) made from Pinus oocarpa and P. kesiya

  • Frederico de Souza
  • C. H. S. Del MenezziEmail author
  • Geraldo Bortoletto Júnior
Originals Originalarbeiten

Abstract

This study aimed at evaluating the mechanical, physical and biological properties of laminated veneer lumber (LVL) made from Pinus oocarpa Schiede ex Schltdl (PO) and Pinus kesiya Royle ex Gordon (PK) and at providing a nondestructive characterization thereof. Four PO and four PK LVL boards from 22 randomly selected 2-mm thickness veneers were produced according to the following characteristics: phenol-formaldehyde (190 g/m2), hot-pressing at 150°C for 45 min and 2.8 N/mm2 of specific pressure. After board production, nondestructive evaluation was conducted, and stress wave velocity (v 0) and dynamic modulus of elasticity (E Md ) were determined. The following mechanical and physical properties were then evaluated: static bending modulus of elasticity (E M ), modulus of rupture (f M ), compression strength parallel to grain (f c,0), shear strength parallel to glue-line (f v,0), shear strength perpendicular to glue-line (f v,90), thickness swelling (TS), water absorption (WA), and permanent thickness swelling (PTS) for 2, 24, and 96-hour of water immersion. Biological property was also evaluated by measuring the weight loss by Trametes versicolor (Linnaeus ex Fries) Pilát (white-rot) and Gloeophyllum trabeum (Persoon ex Fries.) Murrill (brown-rot). After hot-pressing, no bubbles, delamination nor warping were observed for both species. In general, PK boards presented higher mechanical properties: E M , E Md , f M , f c,0 whereas PO boards were dimensionally more stable, with lower values of WA, TS and PTS in the 2, 24, and 96-hour immersion periods. Board density, f v,0, f v,90 and rot weight loss were statistically equal for PO and PK LVL. The prediction of flexural properties of consolidated LVL by the nondestructive method used was not very efficient, and the fitted models presented lower predictability.

Keywords

Flexural Property Trametes Versicolor Laminate Veneer Lumber Thickness Swell Glue Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Materialeigenschaften von Furnierschichtholz aus Pinus oocarpa und Pinus kesiya und deren zerstörungsfreie Prüfung

Zusammenfassung

Ziel dieser Studie war die Bestimmung der mechanischen, physikalischen und biologischen Eigenschaften von Furnierschichtholz (LVL) aus Pinus oocarpa Schiede ex Schltdl (PO) und Pinus kesiya Royle ex Gordon (PK) sowie deren zerstörungsfreie Prüfung. Vier PO und vier PK Platten aus 22 zufällig ausgewählten 2 mm dicken Furnieren wurden wie folgt hergestellt: Phenolformaldehydharz (190 g/m2), Presstemperatur 150 °C, Pressdauer 45 Minuten, Pressdruck 2,8 N/mm2. Nach der Herstellung der Platten wurde diese zerstörungsfrei geprüft und die Spannungswellengeschwindigkeit (v 0) sowie der dynamische E-Modul (E Md ) wurden bestimmt. Anschließend wurden die folgenden mechanischen und physikalischen Eigenschaften bestimmt: statischer Biege-E-Modul (E M ), Biegefestigkeit (f M ), Druckfestigkeit in Faserrichtung (f c,0), Scherfestigkeit in Richtung der Klebstofffuge (f v,0), Scherfestigkeit rechtwinklig zur Klebstofffuge (f v,90), Dickenquellung (TS), Wasseraufnahme (WA) und permanente Dickenquellung (PTS) bei 2-, 24- und 96-stündiger Wasserlagerung. Daneben wurde die natürliche Dauerhaftigkeit mittels Messung des Masseverlustes durch Trametes versicolor (Linnaeus ex Fries) Pilat (Weißfäulepilz) und Gloeophyllum trabeum (Persoon ex Fries.) Murrill (Braunfäulepilz) bestimmt. Nach dem Heißpressen zeigten sich bei beiden Holzarten keinerlei Blasen, Delaminierungen oder Verwerfungen. Generell hatten die PK-Platten bessere mechanische Eigenschaften E M , E Md , f M , f c,0, während die PO-Platten eine bessere Dimensionsstabilität mit niedrigeren WA-, TS- und PTS-Werten nach 2-, 24- und 96-stündiger Wasserlagerung aufwiesen. Die Plattendichte, f v,0, f v,90, sowie der Masseverlust von PO- und von PK-Furnierschichtholz unterschieden sich statistisch nicht. Die Vorhersage der Biegeeigenschaften von Furnierschichtholz mittels des verwendeten zerstörungsfreien Verfahrens war nicht sehr effizient und die angepassten Modelle ergaben nur eine geringe Vorhersagbarkeit.

Notes

Acknowledgements

To the Forest Products Laboratory (LPF), Brazilian Forest Service (SFB), where all material characterization was done, and to the Brazilian Coordination for Personnel Qualification (CAPES) for providing Master Degree Scholarship Grant to the first author.

References

  1. ASTM D 198 (1999a) Standard test methods of static tests of lumber in structural sizes. American Society for Testing Materials, West Conshohocken Google Scholar
  2. ASTM D 1037 (1999b) Standard test methods of evaluating properties of wood-based fiber and particle board materials. American Society for Testing Materials, West Conshohocken Google Scholar
  3. ASTM D 2017 (2005) Standard test method of accelerated laboratory test of natural decay resistance of woods. American Society for Testing Materials, West Conshohocken Google Scholar
  4. ASTM D 5456 (2006) Standard specification for evaluation of structural composite lumber products. American Society for Testing Materials, West Conshohocken Google Scholar
  5. Aydin I, Çolak S, Çolakoglu G, Salih E (2004) A comparative study on some physical and mechanical properties of laminated veneer lumber (LVL) produced from Beech (Fagus orientalis Lipsky) and Eucalyptus camaldulensis Dehn veneers. Holz Roh- Werkst 62:218–220 CrossRefGoogle Scholar
  6. Biblis EJ (1996) Comparison of flexural and shear properties of southern pine LVL and lumber from young plantation and natural stands. Ann Sci For 53:1167–1175 CrossRefGoogle Scholar
  7. Brashaw BK, Wang X, Ross RJ, Pellerin RF (2004) Relationship between stress wave velocities of green and dry veneer. For Prod J 54(6):85–89 Google Scholar
  8. Brazilian Association of Forest Plantations Producers (2008) ABRAF statistical yearbook 2008. 90 p Google Scholar
  9. Bortoletto Júnior G (2008) Avaliação da qualidade da madeira de Pinus merkusii para produção de lâminas. Sci For 78:95–103 Google Scholar
  10. Burdurlu E, Kilic M, Ilce AC, Uzunkavak O (2007) The effects of ply organization and loading direction on bending strength and modulus of elasticity in laminated veneer lumber (LVL) obtained from beech (Fagus orientalis L) and lombardy poplar (Populus nigra L). Constr Build Mater 21:1720–1725 CrossRefGoogle Scholar
  11. Çolak S, Aydin I, Demirkir C, Çolakoglu G (2004) Some technological properties of laminated veneer lumber manufactured from Pine (Pinus sylvestris L) veneers with melamine added—UF resins. Turk J Agric For 28:109–113 Google Scholar
  12. Carvalho AM, Lahr FAR, Bortoletto Júnior G (2004) Use of Brazilian eucalyptus to produce LVL boards. For Prod J 54(11):61–64 Google Scholar
  13. Calil C Jr., Miná AJS (2003) Vibração transversal: um método eficiente para classificação de peças estruturais de madeira. Rev Brasil Eng Agríc Ambient 7:333–338 Google Scholar
  14. Del Menezzi CHS, Silveira R, Santos AP, Souza MR, Camargos JAA (2008a) Evaluation of stress wave and colorimetric variables to predict flexural properties of Brazilian tropical woods. In: Proceedings of 10th world conference on timber engineering, Miyazaki, 7 p Google Scholar
  15. Del Menezzi CHS, Souza RQ, Thompson RM, Teixeira DE, Okino EYA, Costa AF (2008b) Properties after weathering and decay resistance of a thermally modified wood structural board. Int Biodeterior Biodegrad 62:448–454 CrossRefGoogle Scholar
  16. Del Menezzi CHS, Tomaselli I, Okino EYA, Teixeira DE, Santana MAE (2009) Thermal modification of consolidated oriented strandboards: effects on dimensional stability, mechanical properties, chemical composition and surface color. Eur J Wood Prod 67(4):383–396 Google Scholar
  17. Eckelman CA (1993) Potential uses of laminated veneer lumber in furniture. For Prod J 43(4):19–25 Google Scholar
  18. Ferraz JM, Del Menezzi CHS, Teixeira DE, Okino EYA, Souza F, Bravim AG (2009) Propriedades de painéis de partículas laminadas paralelas utilizados em substituição à madeira maciça. Cerne 19:67–74 Google Scholar
  19. Gabriel MSC (2007) Desempenho físico-mecânico de painéis LVLs de pinus tropicais da região de São Paulo. Thesis, PhD in Agronomy, Faculty of Agrarian Sciences, Paulista State University, Botucatu 125 f Google Scholar
  20. Gonçalves R, Costa OAL (2008) Influence of moisture content on longitudinal, radial and tangential ultrasonic velocity for two Brazilian wood species. Wood Fiber Sci 40:580–586 Google Scholar
  21. Gungor NM, Ayrilmis N, Kantay R (2006) Selected physical and mechanical properties of LVL made from Pterocarya fraxinifolia (Clam). Spach For Prod J 56(5):82–85 Google Scholar
  22. Han G, Wu Q, Wang X (2006) Stress-wave velocity of wood based boards: effect of moisture, product type, and material direction. For Prod J 56(1):28–33 Google Scholar
  23. Hayashi T, Miyatake A, Harada M (2002) Outdoor exposure tests of structural laminated veneer lumber (I): evaluation of the physical properties after six years. J Wood Sci 48:69–74 CrossRefGoogle Scholar
  24. Hayashi T, Miyatake A, Fu F, Kato H, Karube M, Harada M (2005) Outdoor exposure tests of structural laminated veneer lumber (II): evaluation of the strength properties after nine years. J Wood Sci 51:486–491 CrossRefGoogle Scholar
  25. Kageyama PY, Vencovsky R, Ferreira M, Nicolielo N (1977) Variação genética entre procedências de Pinus oocarpa Schiede na região de Agudos-SP. IPEF 14:77–120 Google Scholar
  26. Kamala BS, Kuman P, Rao RV, Sharman SN (1999) Performance test of laminated veneer lumber (LVL) from rubber wood for different physical and mechanical properties. Holz Roh- Werkst 57:144–116 CrossRefGoogle Scholar
  27. Killic Y, Colak M, Baysal E, Burdurlu E (2006) An investigation of some physical and mechanical properties of laminated veneer lumber manufactured from black alder (Alnus glutinosa) glued with polyvinyl acetate and polyurethane adhesives. For Prod J 56(9):56–59 Google Scholar
  28. Lee JN, Tang RC, Kaiserlik JH (1999) Edgewise static bending properties of Yellow-poplar laminated veneer lumber: effect of veneer-joint designs. For Prod J 49(7/8):64–70 Google Scholar
  29. Lee JN, Tang RC, Kaiserlik JH (2001) Nondestructive evaluation of modulus of elasticity of yellow-poplar LVL: effect of veneer-joint design and relative humidity. Wood Fiber Sci 33(4):510–521 Google Scholar
  30. Martínez AT, Speranza M, Ruiz-Dueñas F, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204 PubMedGoogle Scholar
  31. Matos JLM (1997) Estudo sobre a produção de painéis estruturais de lâminas paralelas de Pinus taeda L. Thesis, PhD in Forest Sciences, Federal University of Paraná, Curitiba, 117 p Google Scholar
  32. Miná AJS, Oliveira FGR, Calil Jr C, Dias AA, Sales A (2004) Avaliação não-destrutiva de postes de madeira por meio de ultra-som. Sci For 65:188–196 Google Scholar
  33. Nzokou P, Zyskowski J, Boury S, Kamdem DP (2005) Natural decay resistance of LVL made of veneers from durable and non-durable wood species. Holz Roh- Werkst 63:173–178 CrossRefGoogle Scholar
  34. Oliveira FGR, Sales A (2002) Ultrasonic measurements in Brazilian hardwood. Mater Res 5(1):51–55 Google Scholar
  35. Okino EYA, Teixeira DE, Del Menezzi CHS (2007) Post-thermal treatment of oriented strandboard made from cypress (Cupressus glauca Lam) Maderas. Cienc Tecnol 9:199–210 Google Scholar
  36. Özçifçi A (2007) Effects of scarf joints on bending strength and modulus of elasticity to laminated veneer lumber (LVL). Build Environ 42:1510–1514 CrossRefGoogle Scholar
  37. Pellerin RF, Ross RJ (2002) Nondestructive evaluation of wood. FPS, Madison, p 210 Google Scholar
  38. Pio NS (2002). Produção de painéis estruturais de lâminas paralelas (PLP) de Eucalyptus grandis Hill ex-Maiden. Curitiba. Thesis, PhD in Forest Sciences, Agrarian Sciences Sector, Federal University of Paraná, UFPR, 168 p Google Scholar
  39. Pu J, Tang RC (1997) Nondestructive evaluation of modulus of elasticity of southern pine LVL: effect of veneer grade and relative humidity. Wood Fiber Sci 29(3):249–263 Google Scholar
  40. Ritter M, Lee PH, Kainz J, Meyer C (1996) Evaluation of stress-laminated t-beam bridges constructed of laminated veneer lumber. In: National conference on wood transportation structures. Madison, WI, US, Department of Agriculture, Forest Service, Forest Products Laboratory. Gen Tech Rep FPL- GTR-94 Google Scholar
  41. Ross RJ, Brashaw BK, Pellerin RF (1998) Nondestructive evaluation of wood. For Prod J 48(1):14–19 Google Scholar
  42. Sellers T (1985) Plywood and adhesive technology. Dekker, New York, 661 p Google Scholar
  43. Souza F, Del Menezzi CHS, Bortoletto Júnior G, Santos AML (2008) Influência da espécie e do eixo estrutural na velocidade de propagação de ondas de tensão em painéis de lâminas paralelas (LVL). In: Proceedings of 5th symposium of graduation in forest sciences, Brazil, vol 1, pp 409–419 Google Scholar
  44. Shukla SR, Kamdem DP (2009) Properties of laboratory made yellowpoplar (Liriodendron tulipifera) laminated veneer lumber: effect of the adhesives. Eur J Wood Prod 67(4):397–406 Google Scholar
  45. Shukla SR, Kamdem DP (2008) Properties of laminated veneer lumber (LVL) made with low density hardwood species: effect of the pressure duration. Holz Roh- Werkst 66:119–127 CrossRefGoogle Scholar
  46. Santos AML, Del Menezzi CHS, Bortoletto Júnior G (2009) Comportamento teórico e experimental de vigas de madeira em perfil I: efeito do tipo de alma na resistência, rigidez e deslocamento vertical. Sci For 82:131–141 Google Scholar
  47. Santos AML (2008). Avaliação teórica e experimental de vigas em “I” pré-fabricadas de madeira com flange de painéis de lâminas paralelas (LVL) e alma de painéis de partículas orientadas (OSB) e compensado. Dissertation, Master’s Degree in Forest Sciences. Department of Forest Engineering, University of Brasília. 94 p Google Scholar
  48. Targa LA, Ballarin AW, Biaggioni MAM (2005) Avaliação do módulo de elasticidade da madeira com uso de método não-destrutivo de vibração transversal. Eng Agríc 25:291–299 CrossRefGoogle Scholar
  49. Teles RF (2009). Propriedades tecnológicas de vigas de madeira laminada colada produzidas com louro-vermelho (Sextonia rubra). Dissertation, Master’s Degree in Forest Sciences, Department of Forest Engineering, University of Brasília, 101 p Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Frederico de Souza
    • 1
  • C. H. S. Del Menezzi
    • 2
    Email author
  • Geraldo Bortoletto Júnior
    • 3
  1. 1.Institute of Agrarian Sciences, Integrated Faculties of MineirosFIMESMineirosBrazil
  2. 2.Department of Forest Engineering, Faculty of TechnologyUniversity of Brasilia, UnBBrasiliaBrazil
  3. 3.Department of Forest Sciences, Luiz de Queiroz College of AgricultureUniversity of São Paulo USPPiracicabaBrazil

Personalised recommendations