European Journal of Wood and Wood Products

, Volume 69, Issue 2, pp 213–220 | Cite as

Cure properties and adhesive performances of cure-accelerated phenol-urea-formaldehyde resins

  • Dong-Bin FanEmail author
  • Jian-Min Chang
  • Jian-Zhang Li
  • Bi-Hua Xia
  • Zi-Tao Sang
Originals Originalarbeiten


The cure properties of cure-accelerated phenol-urea-formaldehyde (PUF) resins with different catalysts [calcium oxide (CaO), sodium carbonate (Na2CO3), zinc oxide (ZnO), and magnesium oxide (MgO)] were investigated by gelation test and differential scanning calorimetry (DSC) analysis. The results indicated that catalysts such as Na2CO3, ZnO, and MgO were capable of increasing the curing rate and decreasing the curing temperature of PUF resins, however, the CaO inhibited the cure reaction. The formation of methylene bridges was considered to be the main reaction during curing. For the ZnO- and MgO-accelerated PUF resins, the addition reaction of formaldehyde with free phenolic site may act as subsidiary reaction. The activation energies (E a ) of cure-accelerated PUF resins other than CaO-acceleration were much lower than the control resin. The effects of catalysts and hot press temperature on adhesive performances of PUF resins were also discussed by plywood test. The PUF resins with Na2CO3, ZnO, and MgO had higher wet shear strength than the control resin. Hot press temperature had a strong influence on the wet shear strength as well as the catalysts. Among the catalysts, MgO had more significant improving effect on both the curing process and the wet shear strength of PUF resin.


Differential Scanning Calorimetry Curve Oriented Strand Board Methylene Bridge Free Formaldehyde Adhesive Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Aushärtungseigenschaften und Klebstoffverhalten von Phenol-Harnstoff-Formaldehydharzen mit zugesetztem Härtungsbeschleuniger


Mittels Geliertest und Differentialrasterkalorimetrie (DSC) wurden die Aushärtungseigenschaften von Phenol-Harnstoff-Formaldehydharzen (PUF), denen verschiedene Katalysatoren (Calciumoxid (CaO), Natriumcarbonat (Na2CO3), Zinkoxid (ZnO) und Magnesiumoxid (MgO)) als Härtungsbeschleuniger zugesetzt wurden, untersucht. Die Ergebnisse zeigten, dass die Katalysatoren Na2CO3, ZnO und MgO in der Lage sind, die Aushärtungsgeschwindigkeit zu erhöhen und die Aushärtungstemperatur von PUF Harzen zu senken, wohingegen CaO die Aushärtungsreaktion hemmte. Die Bildung von Methylenbrücken wurde als Hauptreaktion bei der Aushärtung angesehen. Bei den mit ZnO- und MgO beschleunigten PUF-Harzen kann die Anlagerung von Formaldehyd an die freien phenolischen OH-Gruppen eine Nebenreaktion darstellen. Die Aktivierungsenergien (E a ) von mit Härtungsbeschleunigern versetzen PUF-Harzen waren, außer bei CaO, viel niedriger als die des Kontrollharzes. Der Einfluss der Katalysatoren und der Heißpresstemperatur auf das Klebstoffverhalten von PUF-Harzen wurde auch an Sperrholz geprüft. PUF-Harze mit zugesetztem Na2CO3, ZnO und MgO wiesen eine höhere Nassscherfestigkeit als das Kontrollharz auf. Die Heißpresstemperatur hatte ebenfalls einen starken Einfluss auf die Nassscherfestigkeit. Unter allen Katalysatoren hatte MgO den größten positiven Einfluss auf sowohl das Aushärten als auch die Nassscherfestigkeit des PUF-Harzes.



The authors are very grateful for financial support from Chinese National Science and Technology planning (Project 2006BAD07A07-10).


  1. Christiansen AW, Gollob L (2003) Differential scanning calorimetry of phenol-formaldehyde resols. J Appl Polym Sci 30(6):2279–2289 CrossRefGoogle Scholar
  2. Effendi A, Gerhauser H, Bridgwater AV (2008) Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew Sustain Energy Rev 12(8):2092–2116 CrossRefGoogle Scholar
  3. Fan DB, Chang JM, Li JZH, Mao A, Zhang LT (2009a) 13C-NMR Study on the Structure of Phenol-Urea-Formaldehyde Resins Prepared by Methylolureas and Phenol. J Appl Polym Sci 112(4):2195–2202 CrossRefGoogle Scholar
  4. Fan DB, Li JZH, Chang JM, Gou JSH, Jiang JX (2009b) Chemical structure and curing behavior of phenol-urea-formaldehyde cocondensed resins of high urea content. J Adhes Sci Technol 23(13–14):1787–1797 CrossRefGoogle Scholar
  5. Fan DB, Li JZH, Chang JM (2009c) On the structure and cure acceleration of phenol-urea-formaldehyde resins with different catalysts. Eur Polym J 45(10):2849–2857 CrossRefGoogle Scholar
  6. Fraser DA, Hall RW, Raum AL (1957) Preparation of ‘high-ortho’ novolak resins I. Metal ion catalysis and orientation effect. J Appl Chem 7(12):676–689 CrossRefGoogle Scholar
  7. He GB, Riedl B (2003) Phenol-urea-formaldehyde cocondensed resol resins: their synthesis, curing kinetics, and network properties. J Polym Sci, Part B 41(16):1929–1938 CrossRefGoogle Scholar
  8. He GB, Yan N (2005) Influence of the synthesis conditions on the curing behavior of phenol–urea–formaldehyde resol resins. J Appl Polym Sci 95(6):1368–1375 CrossRefGoogle Scholar
  9. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706 CrossRefGoogle Scholar
  10. Klasnja B, Kopitovic S (1992) Lignin-phenol-formaldehyde resins as adhesives in the production of plywood. Holz Roh- Werkst 50(7–8):282–285 CrossRefGoogle Scholar
  11. Park BD, Riedl B, Hsu E, Shields J (1999) Differential scanning calorimetry of phenol–formaldehyde resins cure-accelerated by carbonates. Polymer 40(7):1689–1699 CrossRefGoogle Scholar
  12. Pizzi A (1979a) Phenolic and tannin-based adhesive resins by reactions of coordinated metal ligands. I. Phenolic chelates. J Appl Polym Sci 24(5):1247–1255 CrossRefGoogle Scholar
  13. Pizzi A (1979b) Phenolic and tannin-based adhesive resins by reactions of coordinated metal ligands. II. Tannin adhesive preparation, characteristics, and application. J Appl Polym Sci 24(5):1257–1268 CrossRefGoogle Scholar
  14. Pizzi A (1994a) Advanced wood adhesives technology. Dekker, New York Google Scholar
  15. Pizzi A (1994b) Handbook of adhesive technology. Dekker, New York Google Scholar
  16. Pizzi A, Garcia R, Wang S (1997) On the networking mechanisms of additives-accelerated phenol–formaldehyde polycondensates. J Appl Polym Sci 66(2):255–266 Google Scholar
  17. Tomita B, Hse CY (1992) Cocondensation of urea with methylolphenols in acidic conditions. J Polym Sci, Part A 30(8):1615–1624 CrossRefGoogle Scholar
  18. Tomita B, Hse CY (1993) Synthesis and structural analysis of cocondensed resins from urea and methylolphenols. Mokuzai Gakkaishi 39:1276–1284 Google Scholar
  19. Tomita B, Hse CY (1998) Phenol-urea-formaldehyde (PUF) co-condensed wood adhesives. Int J Adhes Adhes 18(2):69–79 CrossRefGoogle Scholar
  20. Turunen M, Alvila L, Pakkanen TT, Rainio J (2003) Modification of phenol–formaldehyde resol resins by lignin, starch, and urea. J Appl Polym Sci 88(2):582–588 Google Scholar
  21. Vázquez G, López-Suevos F, Villar-Garea A, González-Alvarez J, Antorrena G (2004) 13C-NMR analysis of phenol-urea-formaldehyde prepolymers and phenol-urea-formaldehyde-tannin adhesives. J Adhes Sci Technol 18(13):1529–1543 CrossRefGoogle Scholar
  22. Vázquez G, López-Suevos F, González-Alvarez J, Antorrena G (2005) Curing process of phenol-urea-formaldehyde-tannin, (PUFT) adhesives: kinetic studies by DSC and DMA. J Therm Anal Calorim 82(1):143–149 CrossRefGoogle Scholar
  23. Zhao C, Pizzi A, Garnier S (1999) Fast advancement and hardening acceleration of low condensation alkaline PF resins by ester and copolymerized urea. J Appl Polym Sci 74(2):359–378 CrossRefGoogle Scholar
  24. Zhao C, Pizzi A, Kuhn A, Garnier S (2000) Fast advancement and hardening acceleration of low condensation alkaline phenol-formaldehyde resins by esters and copolymerized urea. II. Esters during resin reaction and effect of guanidine salts. J Appl Polym Sci 77(2):249–259 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dong-Bin Fan
    • 1
    Email author
  • Jian-Min Chang
    • 1
  • Jian-Zhang Li
    • 1
  • Bi-Hua Xia
    • 1
  • Zi-Tao Sang
    • 1
  1. 1.College of Materials Science & TechnologyBeijing Forestry UniversityBeijing CityChina

Personalised recommendations