European Journal of Wood and Wood Products

, Volume 69, Issue 2, pp 199–206 | Cite as

Mechanical properties of medium density fiberboard reinforced with metal and woven synthetic nets

  • Behbood MohebbyEmail author
  • Fatemeh Tavassoli
  • Saeed Kazemi-Najafi
Originals Originalarbeiten


This research was planned to study the influence of reinforcement with metal and woven synthetic nets on the mechanical properties of medium density fiberboard (MDF). Sample boards were manufactured according to common practice. However, reinforcements were placed in the boards at one fourth of their thicknesses. Urea formaldehyde resin was used in the boards. However, some metal nets were embedded in an epoxy resin prior to board manufacture. Bending and tensile strengths were determined according to ASTM D 1037-99, impact load resistance according to ASTM D 256-04 and board’s creep according to ASTM D 6815-02.

Results revealed that bending properties (MOE and MOR), tensile strength and impact load resistance were significantly increased due to the reinforcement. Boards reinforced with thin metal nets showed the highest MOR as 105% increase; while the highest MOE and impact load resistance were determined in the boards reinforced by thick metal nets, which were embedded primarily in the epoxy resin as 112% and 79%, respectively. The highest tensile strength was also determined in boards reinforced by thick metal nets. Boards reinforced by woven synthetic nets showed lower strengths than those of the metal nets.


Tensile Strength Flax Fiber Urea Formaldehyde Medium Density Fiberboard Oriented Strand Board 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Mechanische Eigenschaften von mitteldichten Faserplatten verstärkt mit Netzen aus Metall und gewebtem Synthetikmaterial


In dieser Studie wird der Einfluss einer Verstärkung von mitteldichten Faserplatten (MDF) mit Metallnetzen bzw. mit gewebten Synthetiknetzen auf deren mechanische Eigenschaften untersucht. Die Probeplatten wurden praxisüblich hergestellt. Die Verstärkungen wurden in ein Viertel bzw. Dreiviertel der Plattendicke eingebracht. Die Platten wurden mit Harnstoff-Formaldehydharz verklebt. Einige Metallnetze waren vor der Plattenherstellung in Epoxydharz eingebettet worden. Die Biege- und Zugfestigkeiten wurden gemäß ASTM D 1037-99, die Schlagbiegefestigkeit gemäß ASTM D 256-04 und das Kriechverhalten der Platten gemäß ASTM D 6815-02 bestimmt.

Die Ergebnisse zeigten, dass die Biegeeigenschaften (MOE und MOR), die Zugfestigkeit und auch die Schlagbiegefestigkeit aufgrund der Verstärkung signifikant höher waren. Die mit dünnen Metallnetzen verstärkten Platten wiesen mit einer Zunahme von 105% die höchste Biegefestigkeit auf, während sich der höchste Biege-E-Modul, 112 %, und die höchste Schlagbiegefestigkeit, 79%, in Platten, die mit dicken, in Epoxydharz eingebetteten Metallnetzen verstärkt waren, ergab. Die mit dicken Metallnetzen verstärkten Platten wiesen auch die höchste Zugfestigkeit auf. Die mit gewebten Synthetiknetzen verstärkten Platten zeigten niedrigere Festigkeiten als die mit Metallnetzen verstärkten Platten.



The authors express their sincere thanks to Khazar Choob Company for providing fibers for the current research.


  1. Ahmed K, Vigayarangan S, Rajput C (2006) Mechanical behavior of isothalic polyester-based untreated woven jute and glass fabric hybrid composites. J Reinf Plast Compos 25:1549 CrossRefGoogle Scholar
  2. American Society for Testing and Materials (1999a) Standard test methods evaluating properties of wood-based fiber and particle panel materials, D 1037-99 Google Scholar
  3. American Society for Testing and Materials O (1999b) Standard specification for evaluation of duration of load and creep effects of wood and wood-based products, D 6815-02 Google Scholar
  4. American Society for Testing and Materials (1999c) Standard test methods for determining the Izod pendulum impact resistance of plastics, D 256-04 Google Scholar
  5. Cai Z (2006) Selected properties of MDF and flakeboard overlaid with fiberglass. Mat For Prod J 56(11–12):142–146 Google Scholar
  6. Deng Y, Furuno T (2001) Properties of gypsum particleboard reinforced with polypropylene fibers. J Wood Sci 47:445–450 CrossRefGoogle Scholar
  7. Dimakis A, Brightwell L, Kerns J, Neogi A, Robak G, Schulner T, Smith JE (2006) Reinforced wood product and methods for reinforcing a wood product. United States patent no 20060127633 Google Scholar
  8. Kawai S, Ohnishi K, Okudaira Y, Sugawara R, Ueda T (2001) Fiberboard and manufacturing method thereof. United States patent no 6197414 Google Scholar
  9. Kitipornchai S (1986) Reinforcing Timber. United States patent no 458655 Google Scholar
  10. Lindal S (1981) Metal reinforced wood truss and tie means. United States patent no 4274241 Google Scholar
  11. Malcolm HD (1992) Reinforced fiberboard. British patent GB2248246 Google Scholar
  12. Mura IJ, Mura I (2001) Reinforced particle board and method for manufacturing thereof. World Intellectual Property Organization patent no WO/2001/081056 Google Scholar
  13. Obrien M (1991) Reinforced laminated beam. United States patent no 5026593 Google Scholar
  14. Tingley D (2000) Reinforced wood structural member. United States patent no 5648138 Google Scholar
  15. Tröger F, Wegener G, Seemann C (1998) Miscanthus and flax as raw material for reinforced particleboards. Ind Crops Prod 113–121 Google Scholar
  16. Xiong G (1998) Long term behavior of steel-strip reinforced wood shaving-cement board roof panel. Cem Concr Compos 20(4):329–334 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Behbood Mohebby
    • 1
    Email author
  • Fatemeh Tavassoli
    • 1
  • Saeed Kazemi-Najafi
    • 1
  1. 1.Dep. of Wood & Paper Sciences, Faculty of Natural ResourcesTarbiat Modares UniversityNoorIran

Personalised recommendations