Skip to main content
Log in

CT-scanning and modelling of the capillary water uptake in aspen, oak and pine

CT-Messung und Modellierung der kapillaren Wasseraufnahme in Espen-, Eichen- und Kiefernholz

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

This study utilises Computer Tomography (CT-scanning) to characterize the capillary water uptake in wood specimens. CT-scanning makes it possible to study the capillary rise of water as a function of height in wood specimens after a specific exposure time. The study has also included the development of a theoretical model, which determines the capillary characteristics of wood in relation to its structure. The model developed was tested using experimental results, considering the capillary suction height and the water content change after a specific time as boundary values.

A comparison between the theoretical model and the experimental results shows that not all the cells in the wood samples take part in the capillary water transport. It also appears that there is a structural resistance to capillary flow.

Zusammenfassung

In dieser Studie wird mittels Computertomografie (CT-Messung) die kapillare Wasseraufnahme in Holzproben beschrieben. Dieses Verfahren ermöglicht es, die Höhe des kapillaren Wasseranstiegs in den Holzproben nach einer vorgegebenen Eintauchdauer zu untersuchen. Darüber hinaus wurde ein theoretisches Modell zur Bestimmung der kapillaren Eigenschaften von Holz in Abhängigkeit seiner Struktur entwickelt. Dieses Modell wurde anhand von Versuchsergebnissen geprüft, wobei die kapillare Saughöhe und die Änderung des Wassergehalts nach einer vorgegebenen Zeit als Zielwerte berücksichtigt wurden.

Ein Vergleich des theoretischen Modells mit den Versuchsergebnissen ergab, dass nicht alle Zellen in den Holzproben am kapillaren Wassertransport teilnehmen. Es hat sich auch gezeigt, dass es einen strukturbedingten Widerstand gegen die Kapillarströmung gibt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bosshard HH (1974) Holzkunde Band I: Mikroskopie und Makroskopie des Holzes. Birkhäuser Verlag, Basel

    Google Scholar 

  2. Bao F, Siau J F, Avramidis S (1986) Permeability and capillary structure of Chinese woods. Wood Fiber Sci 18(2):220–227

    Google Scholar 

  3. Bao F, Lu J, Zhao Y (2001) Effect of boarded pit torus position on permeability in Chinese yezo spruce. Wood Fiber Sci 33(2):193–199

    CAS  Google Scholar 

  4. Ekström H (1989) Aspen (Populus tremula): Wood properties and utilisation. Swedish University of Agricultural Sciences, Uppsala, Report No. 207 (In Swedish with an English abstract)

  5. Flaete PO, Eikenes B (2000) Osp som byggemateriale (Aspen as a construction material). Norwegian Institute for Forest Research, Report No. 6/00:1–29, (In Norwegian)

  6. Fromm JH, Sautter I, Matthies D, Kremer J, Schumacher P, Ganter C (2001) Xylem water content and wood density in spruce and oak trees detected by high-resolution computed tomography. Plant Physiol 127:416–425

    Article  CAS  PubMed  Google Scholar 

  7. Hart CA, Thomas RJ (1967) Mechanism of bordered pit aspiration as caused by capillarity. Society of Wood Science and Technology, SWST research paper, No. 19

  8. Johansson D, Sehlstedt-Persson M, Moren T (2006) Effect of heat treatment on capillary water absorption of heat-treated pine, spruce and birch. In proceedings of the 5th IUFRO Symposium Wood Structure and Properties 2006, September 3–6, Slovakia

  9. Kohonen MM (2006) Engineered wettability in tree capillaries. Langmuir 22(7):3148–3153

    Article  CAS  PubMed  Google Scholar 

  10. Kollmann FFP, Côte WA Jr (1968) Principles of wood science and technology: I Solid Wood. Springer-Verlag, Berlin

    Google Scholar 

  11. Lancashire JR, Ennos AR (2002) Modelling the hydrodynamic resistance of bordered pits. J Exp Bot 53(373):1485–1493

    Article  CAS  PubMed  Google Scholar 

  12. Lindgren LO (1991) Medical CAT-scanning: X-ray absorption coefficients, CT-numbers and their relation to wood density. Wood Sci Technol 25:341–349

    CAS  Google Scholar 

  13. Lindgren O (1992) Medical CT-scanners for non-destructive wood density and moisture content measurements. Doctoral thesis, Sweden, Luleå University of Technology

  14. Morén T (1993) Creep, deformation and moisture redistribution during air convective wood drying and conditioning. Doctoral thesis, Sweden, Luleå University of Technology

  15. Panshin AJ, De Zeeuw C (1980) Textbook of wood technology: Structure, identification, properties and uses of the commercial woods of the Unites States and Canada. McGraw-Hill, New York

    Google Scholar 

  16. Richter K, Sell J (1992) Untersuchung der kapillaren Transportwege in Weißtannenholz. Holz Roh- Werkst 50:329–336

    Article  CAS  Google Scholar 

  17. Salin JG (2006a) Modelling of the behaviour of free water in sapwood during drying: Part I. A new percolation approach. Wood Mater Sci Eng 1(1):4–11

    Article  Google Scholar 

  18. Salin JG (2006b) Modelling of the behaviour of free water in sapwood during drying: Part II. Some simulation results. Wood Mater Sci Eng 1(2):45–51

    Article  Google Scholar 

  19. Sandberg K (2004) Water absorption and desorption in Norway spruce and its influence on durability. Licentiate thesis, Sweden, Luleå University of Technology

  20. Scheepers G, Morén T, Rypstra T (2007) Liquid water flow in Pinus radiate during drying. Holz Roh- Werkst 65:275–283

    Article  CAS  Google Scholar 

  21. Schulte PJ, Gibson AC (1988) Hydraulic conductance and tracheid anatomy in six species of extant seed plants. Can J Bot 66:1073–1079

    Article  Google Scholar 

  22. Segerholm I (2007) Moisture transport processes in Scots pine – Anomalous capillary suction. Nonisothermal diffusion. Doctoral thesis, Sweden, Chalmers University of Technology

  23. Siau JF (1995) Wood: Influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University

  24. Stamm AJ (1964) Wood and cellulose science. The Ronald Press Company, New York

    Google Scholar 

  25. Taylor FW, Wagner Jr FG, McMillin CW, Morgan LI, Hopkins FF (1984) Locating knots by industrial tomography – A feasibility study. For Prod J 34(5):42–46

    Google Scholar 

  26. Usta I, Hale MD (2006) Comparison of the bordered pits of two species of spruce (Pinaceae) in a green and kiln-dried condition and their effects on fluid flow in the stem wood in relation to wood preservation. Forest 79(4):467–475

    Article  Google Scholar 

  27. Virta J, Koponen S, Absetz I (2006) Modelling moisture distribution in wooden cladding board as a result of short-term single-sided water soaking. Build Environ 41:1593–1599

    Article  Google Scholar 

  28. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273

    Article  Google Scholar 

  29. Wålinder M, Ström G (2001) Measurement of wood wettability by the Wilhelmy method – Part 2. Determination of apparent contact angles. Holzforschung 55(1):33–41

    Google Scholar 

  30. Zhmud BV, Tiberg F, Hallstensson K (2000) Dynamics of capillary rise. J Colloid Interf Sci 228:263–269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy Johansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, J., Kifetew, G. CT-scanning and modelling of the capillary water uptake in aspen, oak and pine . Eur. J. Wood Prod. 68, 77–85 (2010). https://doi.org/10.1007/s00107-009-0359-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-009-0359-4

Keywords

Navigation