Skip to main content
Log in

Wood shrinkage: influence of anatomy, cell wall architecture, chemical composition and cambial age

Schwindverhalten von Holz: Einfluss von Anatomie, Zellwandarchitektur, chemischer Zusammensetzung und Alter des Kambiums

  • ORIGINALARBEITEN/ORIGINALS
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The influence of microfibril angle (MfA), density and chemical cell wall composition on shrinkage varied between the longitudinal and tangential directions as well as between wood types, namely compression wood (CW), mature wood (MW) and juvenile wood (JW). At the same MfA, CW exhibited a lower tangential shrinkage than JW, indicating the influence of the chemical composition on wood shrinkage. The chemical composition measured via FTIR micro-spectroscopy has been shown in conjunction with density to be an alternative to MfA data for shrinkage predictions. This was particularly true for wood of young cambial age for which the MfA did not correlate to shrinkage. The results indicate a possibility to reduce distortion of sawn timber by segregation using infrared (IR) and X-ray in-line measurements.

Zusammenfassung

Der Einfluss des Mikrofibrillenwinkels (MfA), der Rohdichte und der chemischen Zusammensetzung der Zellwand auf das Schwindverhalten variiert sowohl zwischen longitudinaler und tangentialer Richtung als auch zwischen Druckholz (CW), juvenilem (JW) und adultem Holz (MW). Die geringere Tangentialschwindung von CW im Vergleich zu JW bei gleichem MfA weist auf den Einfluss der chemischen Zellwandzusammensetzung auf das Schwindverhalten hin. Es konnte gezeigt werden, dass die chemische Zellwandzusammensetzung, gemessen mittels Mikro-FTIR-Spektroskopie, eine Alternative zum MfA für die Vorhersage des Schwindmaßes darstellt. Dies galt insbesondere für JW, für welches keine Korrelation zwischen Schwindmaß und MfA gefunden wurde. Diese Ergebnisse zeigen eine Möglichkeit zur Reduzierung der Verformung von Schnittholz durch Sortierung basierend auf Infrarot- und Röntgenmessungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akerholm M, Salmén L (2004) Softening of wood polymers induced by moisture studied by dynamic FTIR spectroscopy. J Appl Polym Sci 94:2032–2040

    Article  CAS  Google Scholar 

  2. Altaner C, Hapca AI, Knox JP, Jarvis MC (2007) Antibody labelling of galactan in Sitka spruce (Picea sitchensis (Bong.) Carrière). Holzforschung 61:311–316

    Article  CAS  Google Scholar 

  3. Altaner CM, Tokareva EN, Wong JCT, Hapca AI, McLean JP, Jarvis MC (2009) Measuring compression wood severity in spruce. Wood Sci Technol 43:279–290

    Article  CAS  Google Scholar 

  4. Bailleres H, Davrieus F, Pichavant FH (2002) Near infrared analysis as a tool for rapid screening of some major wood characteristics in a eucalyptus breeding program. Ann For Sci 59:479–490

    Article  Google Scholar 

  5. Barber NF, Meylan BA (1964) The anisotropic shrinkage of wood – A theoretical model. Holzforschung 18:146–156

    Article  Google Scholar 

  6. Barrett JD, Schniewind AP, Taylor RL (1972) Theoretical shrinkage model for wood cell walls. Wood Sci 4:178–192

    CAS  Google Scholar 

  7. Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Technol 38:245–256

    Article  CAS  Google Scholar 

  8. Casperson G (1962) Über die Bildung der Zellwand beim Reaktionsholz. Holztechnologie 3:217–223

    Google Scholar 

  9. Cave ID (1966) Theory of X-ray measurement of microfibril angle in wood. For Prod J 16:37–42

    Google Scholar 

  10. Cave ID (1972) Theory of shrinkage of wood. Wood Sci Technol 6:284–292

    Article  Google Scholar 

  11. Chauhan SS, Walker JCF (2006) Variations in acoustic velocity and density with age, and their interrelationships in radiata pine. For Ecol Manage 229:388–394

    Article  Google Scholar 

  12. Côté WA, Day AC, Timell TE (1968) Studies on Compression Wood. VII. Distribution of lignin in normal and compression wood of Tamarack. Wood Sci Technol 2:13–37

    Article  Google Scholar 

  13. Cousins WJ (1976) Elastic-modulus of lignin as related to moisture-content. Wood Sci Technol 10:9–17

    Article  Google Scholar 

  14. Cousins WJ (1978) Youngs modulus of hemicellulose as related to moisture-content. Wood Sci Technol 12:161–167

    Article  CAS  Google Scholar 

  15. Eastin IL, Shook SR, Fleishman SJ (2001) Material substitution in the US residential construction industry, 1994 versus 1998. For Prod J 51:30–37

    Google Scholar 

  16. Floyd S (2005) Effect of hemicellulose on longitudinal shrinkage in wood. In: Entwisttle KM, Walker JCF (eds) The Hemicelluloses Workshop 2005. The Wood Technology Research Centre, Christchurch, pp 115–120

    Google Scholar 

  17. Hoffmeyer P, Pedersen JG (1995) Evaluation of density and strength of Norway spruce wood by near-infrared reflectance spectroscopy. Holz Roh- Werkst 53:165–170

    Article  Google Scholar 

  18. Johansson M (2002) Moisture-induced distortion in Norway Spruce timber – Experiments and Models. Department of Structural Engineering, Chalmers University of Technology, Gothenborg

  19. Johansson G, Kliger R, Perstorper M (1994) Quality of structural timber-product specification system required by end-users. Holz Roh- Werkst 52:42–48

    Article  Google Scholar 

  20. Johansson M, Nyström J, Ohman M (2003) Prediction of longitudinal shrinkage and bow in Norway spruce studs using scanning techniques. J Wood Sci 49:291–297

    Article  Google Scholar 

  21. Johansson M (2003) Prediction of bow and crook in timber studs based on variation in longitudinal shrinkage. Wood Fiber Sci 35:445–455

    CAS  Google Scholar 

  22. Jones PD, Schimleck LR, Peter GF, Daniels RF, Clark III A (2006) Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Sci Technol 40:709–720

    Article  CAS  Google Scholar 

  23. Kelsey KE (1963) A critical review of the relationship between the shrinkage and structure of wood. Division of Forest Products Technological Paper, CSIRO, Melbourne, Australia, No 28

  24. Kliger R, Johansson M, Perstorper M, Johansson G (2003) Distortion of Norway spruce timber – Part 3: Modelling bow and spring. Holz Roh- Werkst 61:241–250

    Article  Google Scholar 

  25. Koehler A (1931) The longitudinal shrinkage of wood. Trans ASME 53:17–20

    Google Scholar 

  26. Koponen S, Toratti T, Kanerva P (1989) Modelling longitudinal elastic and shrinkage properties of wood. Wood Sci Technol 23:55–63

    Article  Google Scholar 

  27. Koshy MP, Lester DT (1994) Genetic variation of wood shrinkage in a progeny test of coastal Douglas fir. Can J For Res 24:1734–1740

    Article  Google Scholar 

  28. Lu Y, Kretschmann DE, Bendtsen BA (1994) Longitudinal shrinkage in fast-grown loblolly pine plantations. For Prod J 44:58–32

    Google Scholar 

  29. McLean JP (2007) Wood properties of 4 genotypes of Sitka spruce. Ph.D Thesis. Chemistry Department, University of Glasgow, Glasgow

  30. Nuopponen MH, Birch GM, Sykes RJ, Lee SJ, Stewart D (2006) Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy. J Agric Food Chem 54:34–40

    Article  CAS  PubMed  Google Scholar 

  31. Olsson AM, Salmén L (2004) The softening behavior of hemicelluloses related to moisture. In: Hemicelluloses: Science and Technology, Vol 864. Am Chem Soc, Washington, pp 184–197

    Chapter  Google Scholar 

  32. Ormarsson S (1999) Numerical analysis of moisture-related distortions in sawn timber. Department of Structural Mechanics, Chalmers University of Technology, Gothenborg

  33. Panshin AJ, de Zeeuw C (1980) Textbook of wood technology: structure, identification, properties, and uses of the commercial woods of the United States and Canada. McGraw-Hill, New York

    Google Scholar 

  34. Schimleck LR, Evans R, Matheson AC (2002) Estimation of Pinus radiata D. Don clear wood properties by near-infrared spectroscopy. J Wood Sci 48:132–137

    Article  Google Scholar 

  35. Simpson WT, Gerhardt TD (1984) Mechanism of crook development in lumber during drying. Wood Fiber Sci 16:523–536

    Google Scholar 

  36. Skaar C (1988) Wood-water relations. Springer series in wood science. Springer Verlag, Berlin

    Google Scholar 

  37. So CL, Via BK, Groom LH, Schimleck LR, Shupe TF, Kelley SS, Rials TG (2004) Near infrared spectroscopy in the forest products industry. For Prod J 54:6–16

    Google Scholar 

  38. Stanish MA (2000) Predicting the crook stability of lumber within the hygroscopic range. Dry Technol 18:1879–1895

    Article  CAS  Google Scholar 

  39. Suchsland O (2004) The swelling and shrinking of wood – A practical technology primer. Forest Products Society, Madison

    Google Scholar 

  40. Taylor AM, Baek SH, Jeong MK. Nix G (2008) Wood shrinkage prediction using NIR spectroscopy. Wood Fiber Sci 40:301–307

    CAS  Google Scholar 

  41. Thygesen LG (1994) Determination of dry matter content and basic density of Norway spruce by near infrared reflectance and transmittance spectroscopy. J Near Infrared Spectrosc 2:127–135

    Article  CAS  Google Scholar 

  42. Timell TE (1986) Compression wood in gymnosperms. Springer Verlag, Berlin

    Google Scholar 

  43. Tsuchikawa S (2007) A review of recent near infrared research for wood and paper. Appl Spectrosc Rev 42:43–71

    Article  CAS  Google Scholar 

  44. Watanabe U, Norimoto M (1996) Shrinkage and elasticity of normal and compression woods in conifers. Mokuzai Gakkaishi 42:651–658

    Google Scholar 

  45. Wooten TE, Barefoot AC, Nicholas DD (1967) Longitudinal shrinkage of compression wood. Holzforschung 21:168–171

    Article  Google Scholar 

  46. Yamamoto H (1999) A model of the anisotropic swelling and shrinking process of wood. Part 1. Generalization of Barber’s wood fiber model. Wood Sci Technol 33:311–325

    Article  CAS  Google Scholar 

  47. Yamamoto H, Sassus F, Ninomiya M, Gril J (2001) A model of anisotropic swelling and shrinking process of wood – Part 2. A simulation of shrinking wood. Wood Sci Technol 35:167–181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens M. Altaner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonardon, M., Altaner, C.M., Vihermaa, L. et al. Wood shrinkage: influence of anatomy, cell wall architecture, chemical composition and cambial age . Eur. J. Wood Prod. 68, 87–94 (2010). https://doi.org/10.1007/s00107-009-0355-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-009-0355-8

Keywords

Navigation