Skip to main content
Log in

The investigation of basic processes of rapidly hardening wood-cement-water mixture with CO2

Untersuchung der Vorgänge bei der schnellen Härtung einer Holz-Zement-Wasser-Mischung mit CO2

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The rapid hardening of wood-cement-water mixture in a carbon dioxide enriched environment was investigated, by studying the development of carbonation degree and monitoring the phase changes in the mixture. The carbonation reaction was a diffusion-controlled process. It occurred very quickly in the first two minutes of reaction. After that, its rate decreased drastically, due to the increasing difficulty of transporting reactants to reaction sites. Jander’s model was found ineffective in predicting the carbonation process. However, its modified version, developed by Kroger and Ziegler, could describe this progress accurately. In addition, the rapid hardening appeared to result mainly from the reactions of calcium silicates in cement with carbon dioxide. The reaction between ettringite and carbon dioxide might also contribute to this rapid hardening process. However, the reaction between calcium hydroxide and carbon dioxide was not confirmed.

Zusammenfassung

Untersucht wurde die schnelle Härtung einer Holz-Zement-Wasser-Mischung in einer mit Kohlendioxid angereicherten Atmosphäre. Dabei wurde der Fortschritt des Karbonatisierungsgrades sowie der Phasenwechsel in der Mischung bestimmt. Bei der Karbonatisierungsreaktion handelt es sich um einen diffusionsgesteuerten Prozess. Dieser verläuft in den ersten zwei Minuten der Reaktion sehr schnell und verlangsamt sich danach sehr stark, da der Transport der Reaktanten zu den Reaktionsstellen zunehmend schwieriger wird. Das Modell von Jander erwies sich für die Vorhersage des Karbonatisierungsprozesses als ungeeignet. Allerdings konnte durch die von Kroger und Ziegler modifizierte Version der Ablauf genau beschrieben werden. Außerdem schien die schnelle Härtung hauptsächlich auf den Reaktionen der Kalziumsilikate im Zement mit dem Kohlendioxid zu beruhen. Die Reaktion zwischen Ettringit und Kohlendioxid könnte auch zur schnellen Härtung beigetragen haben. Die Reaktion zwischen Kalziumhydroxid und Kohlendioxid wurde jedoch nicht bestätigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger RL, Klemm WA (1972) Accelerated curing of cementitious systems by carbon dioxide; Part II: Hydraulic calcium silicates and aluminates. Cement Concrete Res 2(6):647–652

    Article  CAS  Google Scholar 

  2. Bukowski JM, Berger RL (1979) Reactivity and strength development of CO2 activated non-hydraulic calcium silicates. Cement Concrete Res 9(1):57–68

    Article  CAS  Google Scholar 

  3. Dunster AM (1989) An investigation of the carbonation of cement paste using trimethylsilylation. Adv Cement Res 2(7):99–106

    CAS  Google Scholar 

  4. Geimer RL, Leao A, Armbruster D, Pablo A (1994) Property enhancement of wood composites using gas injection. In: Maloney M (ed) Proceedings of the 28th Washington State University International Particleboard/Composite Materials Symposium, Pullman, WA, pp 243–259

  5. Geimer RL, Souza MR, Moslemi AA (1996) Low-density cement-bonded wood composites made conventionally and with carbon dioxide injection. Drvna Industrija 47(2):55–62

    Google Scholar 

  6. Goodbreak CJ, Young JF, Berger RL (1979a) Reaction of Beta dicalcium silicate and tricalcium silicate with carbon dioxide and water vapour. J Am Ceram Soc 62(3/4):168–171

    Article  Google Scholar 

  7. Goodbreak CJ, Young JF, Berger RL (1979b) Reaction of hydraulic calcium silicates with carbon dioxide and water. J Am Ceram Soc 62(9/10):488–491

    Article  Google Scholar 

  8. Goto S, Suenaga K, Kado T (1995) Calcium silicate carbonation products. J Am Ceram Soc 78(11):2867–2872

    Article  CAS  Google Scholar 

  9. Harrison LG (1969) The theory of solid phase kinetics. In: Bamford CH, Tipper CFH (eds) Comprehensive Chemical Kinetics. Elsevier Publishing Company, Amsterdam, pp 377–462

    Google Scholar 

  10. Hermawan D, Hata T, Umemura K, Kawai S, Kaneko S, Kuroki Y (2000) New technology for manufacturing high-strength cement-bonded particleboard using supercritical carbon dioxide. J Wood Sci 46(1):85–88

    Article  CAS  Google Scholar 

  11. Hermawan D, Hata T, Umemura K, Kawai S, Nagadomi W, Kuroki Y (2001) Rapid production of high-strength cement-bonded particleboard using gaseous or supercritical carbon dioxide. J Wood Sci 47(4):294–300

    Article  CAS  Google Scholar 

  12. Hulbert SF (1969) Models for solid-state reactions in powdered compacts: a review. J Brit Ceram Soc 6(1):11–19

    CAS  Google Scholar 

  13. Klemm WA, Berger RL (1972) Accelerated curing of cementitious systems by carbon dioxide; Part I: Portland cement. Cement Concrete Res 2(5):567–576

    Article  CAS  Google Scholar 

  14. Lahtinen PK (1990) Experience with cement-bonded particleboard manufacturing when using a short-cycle press line. In: Moslemi AA (ed) Proceedings, Inorganic-Bonded Wood and Fiber Composite Materials, Forest Products Research Society, Madison, WI, pp 32–34

  15. Matsushita F, Aono Y, Shibata S (2000) Carbonation degree of autoclaved aerated concrete. Cement Concrete Res 30(11):1741–1745

    Article  CAS  Google Scholar 

  16. Midgley HG (1979) The determination of calcium hydroxide in set Portland cement. Cement Concrete Res 9(1):77–82

    Article  CAS  Google Scholar 

  17. Moorehead DR (1986) Cementation by the carbonation of hydrated lime. Cement Concrete Res 16(5):700–708

    Article  CAS  Google Scholar 

  18. Nishikawa T, Suzuki K, Ito S (1992) Decomposition of synthesized ettringite by carbonation. Cement Concrete Res 22(1):6–14

    Article  CAS  Google Scholar 

  19. Pearce WR (2002) Mill test report – CSA A5 Type 10. St. Marys Cement Inc., St. Marys, Ontario

    Google Scholar 

  20. Porandowski J, Cooper PA, Kaldas ML, Ung YT (1998) Evolution of CO2 during the fixation of chromium containing wood preservatives on wood. Wood Sci Technol 32(1):15–24

    CAS  Google Scholar 

  21. Qi H, Cooper PA (2007) The effects of composition and carbon dioxide injection time on the properties of wood-cement composites. Holz Roh- Werkst 65(4):267–273

    Article  CAS  Google Scholar 

  22. Qi H, Cooper PA, Wan H (2006) Effect of carbon dioxide injection on production of wood cement composites from waste medium density fiberboard (MDF). Waste Manag 26(5):509–515

    Article  CAS  PubMed  Google Scholar 

  23. Reardon EJ, James BR, Abouchar J (1988) High pressure carbonation of cementitious grout. Cement Concrete Res 19(3):385–399

    Article  Google Scholar 

  24. Saetta AV, Schrefler BA, Vitaliani RV (1993) The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials. Cement Concrete Res 23(4):761–772

    Article  CAS  Google Scholar 

  25. Schmidt E (1988) Requirements and demands for further processing of cement-bonded boards. In: Moslemi AA (ed) Proceedings, Inorganic-Bonded Wood and Fiber Composite Materials, Forest Products Society, Madison, WI, pp 88–90

  26. Simatupang MH, Geimer RL (1991) Inorganic binder for wood composites: feasibility and limitations. In: Conner AH (ed) Wood Adhesives 1990, Forest Products Research Society, Madison, WI, pp 169–176

  27. Simatupang MH, Habighorst C, Lange H, Neubauer A (1995) Investigations on the influence of the addition of carbon dioxide on the production and properties of rapidly set wood-cement composites. Cement Concrete Compos 17(3):187–197

    Article  CAS  Google Scholar 

  28. Simatupang MH, Neubauer A (1993) Manufacture and properties of rapid-hardening cement-bonded particleboards made by carbon-dioxide injection: influence of cement strength class. Holz Roh- Werkst 51(5):309–311

    Article  CAS  Google Scholar 

  29. Sorochkin MA, Shchurov AF, Makarychev AS, Safonov IA (1975) Physicochemical studies of the effect of hydration of calcium silicates in carbon dioxide. J Appl Chem USSR 48(5):1039–1042

    Google Scholar 

  30. Soroushian P, Won J, Chowdhury H, Nossoni A (2003) Development of accelerated processing techniques for cement-bonded wood particleboard. Cement Concrete Compos 25(7):721–727

    Article  CAS  Google Scholar 

  31. Taylor HFW (1990) Cement chemistry. Academic Press Limited, London

    Google Scholar 

  32. Wagh AS, Singh D, Knox Jr L (1995) An environmentally friendly technology: lab studying greenhouse effect on concrete setting. Concrete Int 1995(4):41–42

    Google Scholar 

  33. Young JF, Berger RL, Breese J (1974) Accelerated curing of compacted calcium silicate mortars on exposure to CO2. J Am Ceram Soc 57(9):394–397

    Article  CAS  Google Scholar 

  34. Yudenfreund M, Odler I, Brunauer S (1972) Hardened Portland cement pastes of low porosity, I. Materials and experimental methods. Cement Concrete Res 2(3):313–330

    Article  CAS  Google Scholar 

  35. Zhou Q, Glasser FP (2000) Kinetics and mechanism of the carbonation of ettringite. Adv Cement Res 12(3):131–136

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hucheng Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, H., Cooper, P.A. & Hooton, D. The investigation of basic processes of rapidly hardening wood-cement-water mixture with CO2 . Eur. J. Wood Prod. 68, 35–41 (2010). https://doi.org/10.1007/s00107-009-0351-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-009-0351-z

Keywords

Navigation