Skip to main content
Log in

In-treatment cooling during thermal modification of wood in soy oil medium: soy oil uptake, wettability, water uptake and swelling properties

Wärmebehandlung von Holz mit anschließender Abkühlung in Sojaöl: Sojaölaufnahme, Benetzbarkeit, Wasseraufnahme und Quelleigenschaften

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Thermal modification of wood is a process which has gained wider acceptability as an alternative to chemical treatment in wood preservation. In order to maximize the benefits of this technique several options have been adopted including the use of soy oil in transferring the heat to the wood. Available information on thermal treatment in general and the oil method in particular show that there is need for further investigations on the possibilities of improving the available options in order to evolve new techniques.

Thermal treatment of ponderosa pine (Pinus ponderosa P Laws ex C Laws) and black spruce (Picea mariana (Mill) BSP) in soy bean oil was carried out at 220 °C for 2 hours followed by cooling inside the hot oil 180 °C and 135 °C. The surface wettability, (contact angle), amount of oil uptake, water absorption and thickness swelling were determined thereafter.

The oil uptake ranged from 88 to 93.3% in the permeable ponderosa pine sapwood and from 6.1 to 11.3% in the refractory black spruce with the uptake increasing with cooling time but decreasing with increasing depth of wood in both species. Thermal modification in soybean oil increased the wettability of the surface to water (reduced contact angle). However, there were no significant changes to the surface energies due to in-treatment cooling, as determined by contact angles of water, glycerol, ethylene glycol, and formamide.

There were reductions in the hydrophilic behaviour and swelling of wood as a result of the thermal treatment; in-oil cooling resulted in greater hydrophobicity and dimensional stability in the wood. In both species, there were greater reductions in water uptake and swelling with increasing cooling time.

Zusammenfassung

Die Wärmebehandlung von Holz stößt als Alternative zum chemischen Holzschutz auf immer größere Akzeptanz. Um ein möglichst wirtschaftliches Holzschutzverfahren zu entwickeln, wurden zahlreiche Möglichkeiten untersucht, einschließlich der Verwendung von Sojaöl zur Übertragung der Wärme zum Holz. Der Stand der Informationen zur Wärmebehandlung im Allgemeinen und zum Ölverfahren im Besonderen zeigt, dass zur Weiterentwicklung dieser neuen Verfahren weitere Untersuchungen notwendig sind.

Gelbkiefer- (Pinus ponderosa P Laws ex C Laws) und Schwarzfichteproben (Picea mariana (Mill) BSP) wurden in Sojaöl bei 220 °C einer zweistündigen Wärmebehandlung unterzogen und danach im heißen Öl bei 180 und 135 °C abgekühlt. Anschließend wurden die Oberflächenbenetzbarkeit (Kontaktwinkel), die Ölaufnahme, die Wasseraufnahme und die Dickenquellung bestimmt.

Die Ölaufnahme lag bei dem gut tränkbaren Gelbkiefernsplintholz zwischen 88 und 93.3% und bei den schwer tränkbaren Schwarzfichtenproben zwischen 6,1 und 11.3%, wobei die Aufnahme mit steigender Abkühlzeit zunahm und mit zunehmender Holztiefe bei beiden Holzarten abnahm.

Durch die Wärmebehandlung in Sojaöl erhöhte sich die Oberflächenbenetzbarkeit (kleinerer Kontaktwinkel), jedoch zeigte die Bestimmung der Kontaktwinkel von Wasser, Glycerol, Äthylenglykol und Formamid, dass sich durch die Abkühlung die Oberflächenenergien nicht signifikant veränderten.

Die hydrophilen Eigenschaften und die Dickenquellung von Holz nahmen aufgrund der Wärmebehandlung ab. Die Abkühlung in Öl führte zu einer stärkeren Hydrophobierung und größeren Dimensionsstabilität. Bei beiden Holzarten nahm die Wasseraufnahme und Dickenquellung mit zunehmender Abkühlzeit ab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alen R, Kotilainen R, Zaman A (2002) Thermochemical behaviour of Norway spruce (Picea abies) at 180–225 °C. Wood Sci Technol 36:163–171

    Article  CAS  Google Scholar 

  2. Awoyemi L, Westermark U (2005) Effects of borate impregnation on the response of wood strength to heat treatment. Wood Sci Technol 39:484–491

    Article  CAS  Google Scholar 

  3. Ayadi N, Lejeune F, Charrier F, Charrier B, Merlin A (2003) Colour stability of heat-treated wood during artificial weathering. Holz Roh- Werkst 61:221–226

    CAS  Google Scholar 

  4. Bhuiyan MTR, Hirai N, Sobue N (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46:431–436

    Article  CAS  Google Scholar 

  5. Boonstra MJ, Tjeerdsma B (2006) Chemical analysis of heat treated softwoods. Holz Roh- Werkst 64:204–211

    Article  CAS  Google Scholar 

  6. Boonstra MJ, Pizzi A, Ganne-Chedeville C, Properzi M, Leban JM, Pichelin F (2006) Vibration welding of heat-treated wood. J Adhesion Sci Technol 20:359–369

    Article  CAS  Google Scholar 

  7. Boonstra MJ, van Acker J, Kegel E, Stevens M (2006) Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol 41:31–57

    Article  Google Scholar 

  8. Dwianto W, Morooka T, Norimoto M (1998) The compressive stress relaxation of albizia (Paraserienthes falcate Becker) wood during heat treatment. Mokuzzai Gakkaishi 44:403–409

    CAS  Google Scholar 

  9. Geissen A, Du QP (1995) Influence of heat treatment on the accuracy of wood moisture content determination by electrical resistance-type meters. Holz Roh- Werkst 53:303–307

    CAS  Google Scholar 

  10. Hakkou M, Petrissans M, Zoulalian A, Gerardin P (2005) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stabil 89:1–5

    Article  CAS  Google Scholar 

  11. Hanger J, Huber H, Lackner R, Wimmer R, Fellner J (2002) Improving the natural durability of heat-treated spruce, pine and beech. Holzforsch Holzverwert 54:92–93

    CAS  Google Scholar 

  12. Hodgin DA, Lee AWC (2002) Comparison of strength properties and failure characteristics between fire-retardant-treated and untreated roofing lumber after long-term exposure: A South Carolina case study. For Prod J 52:91–94

    CAS  Google Scholar 

  13. Kamdem DP, Pizzi A, Triboulot MC (2000) Heat-treated timber: potentially toxic byproducts presence and extent of wood cell wall degradation. Holz Roh- Werkst 58:253–257

    Article  CAS  Google Scholar 

  14. Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Holz Roh- Werkst 60:1–6

    Article  CAS  Google Scholar 

  15. Kubojima Y, Okano T, Ohta M (2000) Bending strength and toughness of heat-treated wood. J Wood Sci 46:8–15

    Article  Google Scholar 

  16. Manninen AM, Pasanen P, Holopainen JK (2002) Comparing the VOC emissions between air-dried and heat-treated Scots pine wood. Atmos Environ 36:1763–1768

    Article  CAS  Google Scholar 

  17. Maruyama S, Ishiguri F, Andoh M, Abe Z, Yokota S, Takahashi K, Yoshizawa N (2001) Reddening by UV irradiation after smoke-heating in sugi (Cryptomeria japonica D. Don) black heartwood. Holzforschung 55:347–354

    Article  CAS  Google Scholar 

  18. Metsa-Kortelainen S, Antikainen T, Viitanieni P (2006) The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C and 230 °C. Holz Roh- Werkst 64:192–197

    Article  Google Scholar 

  19. Mitsui K (2006) Changes in colour of spruce by repetitive treatment of light-irradiation and heat treatment. Holz Roh- Werkst 64:243–244

    Article  Google Scholar 

  20. Mohammed H, Mathieu P, Idriss EB, Philippe G, Andre Z (2005) Wettability changes and mass loss during heat treatment of wood. Holzforschung 59:35–37

    Article  Google Scholar 

  21. Nogi M, Yamamoto H, Okuyama T (2003) Relaxation mechanism of residual stress inside logs by heat treatment: chosing the heating time and temperature. J Wood Sci 49:22–28

    Article  Google Scholar 

  22. Nuopponen M, Vuorinen T, Jamsa S, Viitaniemi P (2003) The effects of a heat treatment on the behaviour of extractives in softwood studied by FTIR spectroscopic methods. Wood Sci Technol 37:109–115

    Article  CAS  Google Scholar 

  23. Nuopponen M, Vuorinen T, Jamsa S, Viitaniemi P (2004) Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J Wood Chem Technol 24:13–26

    Article  CAS  Google Scholar 

  24. Nuopponen M, Wikberg H, Vuorinen T, Maunu SL, Jamsa S, Viitaniemi P (2004) Heat-treated softwood exposed to weathering. J Appl Polym Sci 91:2128–2134

    Article  CAS  Google Scholar 

  25. Obataya E, Tanaka F, Norimoto M, Tomita B (2000) Hygroscopicity of heat-treated wood. I. Effects of after-treatments on the hygroscopicity of heat-treated wood. Mokuzai Gakkaishi 46:77–87

    CAS  Google Scholar 

  26. Obataya E, Tomita B (2002) Hygroscopicity of heat-treated wood. II. Reversible and irreversible reductions in the hygroscopicity of wood due to heating. Mokuzai Gakkaishi 48:288–295

    CAS  Google Scholar 

  27. Petrissans M, Gerardin P, ElBakali I, Serraj M (2003) Wettability of heat treated wood. Holzforschung 57:301–307

    Article  CAS  Google Scholar 

  28. Rapp AO, Sailer M (2001) Oil-heat-treatment of wood-process and properties. Drvna Industrija 52:63–70

    Google Scholar 

  29. Sailer M, Rapp AO, Leithoff H, Peek RD (2000) Upgrading of wood by application of an oil-heat treatment. Holz Roh- Werkst 58:15–22

    Article  CAS  Google Scholar 

  30. Sundqvist B, Karlsson O, Westermark U (2006) Determination of formic acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci Technol 40:549–561

    Article  CAS  Google Scholar 

  31. Tejada A, Okuyama T, Yamamoto H, Yoshida M (1997) Reduction of growth stresses in log by direct heat treatment: Assessment of a commercial scale operation. For Prod J 47:86–93

    Google Scholar 

  32. Tejada A, Okuyama T, Yamamoto H, Yoshida M, Imai T, Itoh T (1998) Studies on the softening point of wood powder as a basis for understanding the release of residual stresses in logs. For Prod J 48:84–90

    CAS  Google Scholar 

  33. Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh- Werkst 63:102–111

    Article  CAS  Google Scholar 

  34. Udaka E, Furuno T (2003) Change in crystalline structure of compressed wood by treatment with a closed heating system. Mokuzai Gakkaishi 49:1–6

    CAS  Google Scholar 

  35. Wang JY, Cooper PA (2005) Effect of oil type, temperature and time on moisture properties of hot oil-treated wood. Holz Roh- Werkst 63:417–422

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Awoyemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awoyemi, L., Cooper, P.A. & Ung, T.Y. In-treatment cooling during thermal modification of wood in soy oil medium: soy oil uptake, wettability, water uptake and swelling properties . Eur. J. Wood Prod. 67, 465–470 (2009). https://doi.org/10.1007/s00107-009-0346-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-009-0346-9

Keywords

Navigation