Skip to main content
Log in

Quality assessment of heat-treated wood by NIR spectroscopy

Qualitätsbewertung von wärmebehandeltem Holz mittels NIR-Spektroskopie

  • Originalarbeiten Originals
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

NIR spectroscopy was tested for predicting the properties of heat treated wood using pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) woods with two types of treatment: in oven and in a steam autoclave. Mass loss, equilibrium moisture content, dimensional stability, MOE, bending strength, colour CIELAB parameters and extractives content were determined. NIR spectra were obtained using a fibre probe on the radial surface of the samples. NIR models for mass loss showed very high coefficients of determination (R2) for cross validation ranging from 96–98%. The models obtained for wood properties were in general good with coefficients of determination ranging from 78–95% for equilibrium moisture content, 53–78% for dimensional stability, 47–89% for MOE, 75–77% for bending strength and 84–99%, 52–96% and 66–98% for colour parameters L, a* and b*, respectively. R2 of the models for extractive content varied between 41.9–79.8% for pine and between 35.3–82.2% for eucalypt wood. NIR spectroscopy showed a good potential for quality control and characterization of heat treated woods.

Zusammenfassung

Untersucht wurde die Möglichkeit, die Eigenschaften von wärmebehandeltem Kiefern- (Pinus pinaster) und Eukalyptusholz (Eucalyptus globulus) mit Hilfe von NIR-Spektroskopie zu bestimmen. Dabei wurde das Holz auf zwei verschiedene Arten wärmebehandelt, im Ofen und im Autoklaven. Masseverlust, Gleichgewichtsfeuchte, Dimensionsstabilität, Elastizitätsmodul, Biegefestigkeit, CIELAB Farbparameter und Extraktstoffgehalt wurden bestimmt. Die NIR-Spektren wurden mit einer Fasersonde auf der radialen Oberfläche der Prüfkörper ermittelt. NIR-Modelle zur Bestimmung des Masseverlusts ergaben ein sehr hohes Bestimmtheitsmaß (R2) von 96–98%. Die für die Holzeigenschaften ermittelten Modelle waren generell gut. Das Bestimmtheitsmaß für die Gleichgewichtsfeuchte lag zwischen 78–95%, für die Dimensionsstabilität zwischen 53–78%, für den Elastizitätsmodul zwischen 47–89%, für die Biegefestigkeit zwischen 75–77% und für die Farbparameter L, a* und b* zwischen 84–99%, 52–96% sowie 66–98%. Das Bestimmtheitsmaß für den Extraktstoffgehalt von Kiefernholz schwankte zwischen 41.9–79.8% und das von Eukalyptusholz zwischen 35.3–82.2%. Die NIR-Spektroskopie erwies sich somit als ein gut geeignetes Verfahren zur Qualitätskontrolle und Beurteilung von wärmebehandeltem Holz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves A, Schwanninger M, Pereira H, Rodrigues J (2006) Calibration of NIR to assess lignin composition (H/G ratio) in maritime pine wood using analytical pyrolysis as the reference method. Holzforschung 60:29–31

    Article  CAS  Google Scholar 

  2. Baillères H, Davrieus F, Pichavant FH (2002) Near infrared analysis as a tool for rapid screening of some major wood characteristics in a eucalyptus breeding program. Ann For Sci 59:479–490

    Article  Google Scholar 

  3. Brischke C, Welzbacher C, Brandt K, Rapp A (2007) Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIE L*a* b* color data on homogenized wood samples. Holzforschung 61:19–22

    Article  CAS  Google Scholar 

  4. Dirol D, Guyonnet R (1993) Durability by rectification process. Int Res Group Wood Pre Section 4-Processes No IRG/WP 93-40015

  5. Esteves B, Domingos I, Pereira H (2007a) Improvement of technological quality of eucalypt wood by heat treatment in air at 170–200 °C. For Prod J 57(1/2):47–52

    Google Scholar 

  6. Esteves B, Velez Marques A, Domingos I, Pereira H (2007b) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 41:193–207

    Article  CAS  Google Scholar 

  7. Esteves B, Velez Marques A, Domingos I, Pereira H (2007c) Heat induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 42:369–384

    Article  CAS  Google Scholar 

  8. Gierlinger N, Schwanninger M, Hinterstoisser B, Wimmer R (2002) Rapid determination of heartwood extractives in Larix sp by means of Fourier transform near infrared spectroscopy. J Near Infrared Spec 10:203–214

    CAS  Google Scholar 

  9. Gindl W, Teischinger A, Schwanninger M, Hinterstoisser B (2001) The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties. J Near Infrared Spectroscopy 9:255–261

    CAS  Google Scholar 

  10. Hakkou M, Pétrissans M, Gérardin P, Zoulalian A (2006) Investigation of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stab 91:393–397

    Article  CAS  Google Scholar 

  11. Hinterstoisser B, Schwanninger M, Stefke B, Stingl R, Patzelt M (2003) Surface Analyses of Chemically and Thermally Modified Wood by FT-NIR. Proceedings of the First European Conference on Wood Modification, 3–4 April 2003, Ghent, Belgium

  12. Hoffmeyer P, Pedersen JG (1995) Evaluation of density and strength of Norway spruce wood by near-infrared reflectance spectroscopy. Holz Roh- Werkst 53:165–170

    Article  Google Scholar 

  13. Holmgren A, Bertgstrom B, Gref R, Ericsson A (1999) Detection of pinosylvins in solid wood of Scots pine using Fourier transform Raman and infrared spectroscopy. J Wood Chem Technol 19:139–150

    Article  CAS  Google Scholar 

  14. Jämsä S, Viitaniemi P (2001) Heat treatment of wood – Better durability without chemicals. Proceedings of the special seminar of COST Action E22, 9 February 2001, Antibes, France

  15. Jämsa S, Ahola P, Viitaniemi P (2000) Long-term natural weathering of coated ThermoWood. Pigm Resin Technol 29(2):68–74

    Article  Google Scholar 

  16. Jones P, Schimleck L, Peter G, Daniels R, Clark A (2005) Non-destructive estimation of Pinus taeda L wood properties for samples from a wide range of sites in Georgia. Can J Forest Res 35:85–92

    Article  Google Scholar 

  17. Kamdem D, Pizzi A, Jermannaud A (2002) Durability of heat treated wood. Holz Roh- Werkst 60:1–6

    Article  CAS  Google Scholar 

  18. Kelley S, Rials T, Snell R, Groom L, Chi-Leung S (2004a) Use of near infrared spectroscopy to predict the mechanical properties of six softwoods. Holzforschung 58:252–260

    Article  CAS  Google Scholar 

  19. Kelley S, Rials T, Snell R, Groom L, Sluiter A (2004b) Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood. Wood Sci Technol 38:257–276

    Article  CAS  Google Scholar 

  20. Mitsui K, Takada H, Sugiyama M, Hasegawa R (2001) Changes in the properties of light-irradiated wood with heat treatment: Part 1 Effect of treatment conditions on the change in color. Holzforschung 55:601–605

    Article  CAS  Google Scholar 

  21. Osborne BG, Fearn T, Hindle PH (1993) Practical NIR Spectroscopy with Applications in Food and Beverage Analysis. Longman Scientific-Technical, Harlow, Essex

    Google Scholar 

  22. Poke FS, Raymond CA (2006) Predicting extractives lignin and cellulose contents using near infrared spectroscopy on solid wood in Eucalyptus globulus. J Wood Chem Technol 26:187–199

    Article  CAS  Google Scholar 

  23. Poke FS, Wright JK, Raymond CA (2004) Predicting extractives and lignin contents in Eucalyptus globulus using near infrared reflectance analysis. J Wood Chem Technol 24:55–67

    Article  CAS  Google Scholar 

  24. Rapp A, Brischke C, Welzbacher C (2006) Interrelationship between the severity of heat treatments and sieve fractions after impact ball milling: a mechanical test for quality control of thermally modified wood. Holzforschung 60:64–70

    Article  CAS  Google Scholar 

  25. Rodrigues J, Alves A, Pereira H, Perez D, Chantre G, Schwanninger M (2006) NIR PLSR results obtained by calibration with noisy low-precision reference values: Are the results acceptable? Holzforschung 60(4):402–408

    Article  CAS  Google Scholar 

  26. Schimleck LR, Evans R (2003) Estimation of air-dry density of increment cores by near infrared spectroscopy. Appita J 56:312–317

    Google Scholar 

  27. Schimleck LR, Evans R, Ilic J (2001) Estimation of Eucalyptus delegatensis wood properties by near infrared spectroscopy. Can J Forest Res 31:1671–1675

    Article  Google Scholar 

  28. Schimleck LR, Wright PJ, Michell AJ, Wallis AFA (1997) Near infrared spectra and chemical compositions of E globulus and E nitens plantation woods. Appita J 50:40–46

    CAS  Google Scholar 

  29. Schimleck LR, Jones PD, Clark A, Daniels RF, Peter GF (2005) Near infrared spectroscopy for the nondestructive estimation of clear wood properties of Pinus taeda L from the southern United States. For Prod J 55:21–28

    Google Scholar 

  30. Schultz T, Burns D (1990) Rapid secondary analysis of lignocellulose: comparison of near infrared (NIR) and Fourier transform infrared (FTIR). Tappi J 5:209–212

    Google Scholar 

  31. Schwanninger M, Hinterstoisser B, Gierlinger N, Wimmer R, Hanger J (2004) Application of Fourier Transform Near Infrared Spectroscopy (FT-NIR) to thermally modified wood. Holz Roh- Werkst 62(6):483–485

    CAS  Google Scholar 

  32. Thumm A, Meder R (2001) Stiffness prediction of radiata pine clear wood test pieces using near infrared spectroscopy. J Near Infrared Spec 9:117–122

    Article  CAS  Google Scholar 

  33. Thygesen LG, Lundqvist SO (2000a) NIR measurement of moisture content in wood under unstable temperature conditions Part 1 Thermal effects in near infrared spectra of wood. J Near Infrared Spec 8:183–189

    CAS  Google Scholar 

  34. Thygesen LG, Lundqvist SO (2000b) NIR measurement of moisture content in wood under unstable temperature conditions Part 2 Handling temperature fluctuations. J Near Infrared Spec 8:191–199

    CAS  Google Scholar 

  35. Tsuchikawa S, Torii M, Tsutsumi S (1996) Application of near infrared spectrophotometry to wood 4 Calibration equations for moisture content. Mokuzai Gakkaishi 42:743–754

    Google Scholar 

  36. Viitaniemi P, Jämsä S, Viitanen H (1997) Method for improving biodegradation resistance and dimensional stability of cellulosic products. United States Patent No 5678324 US005678324

  37. Wang J, Cooper P (2005) Effect of oil type temperature and time on moisture properties of hot oil-treated wood. Holz Roh- Werkst 63:417–422

    Article  CAS  Google Scholar 

  38. Wu Y, Tsuchikawa S, Hayashi K (2005) Application of near infrared spectroscopy to assessments of colour change in plantation-grown Eucalyptus grandis wood subjected to heat and steaming treatments. J Near Infrared Spec 13(6):371–376

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Esteves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteves, B., Pereira, H. Quality assessment of heat-treated wood by NIR spectroscopy . Holz Roh Werkst 66, 323–332 (2008). https://doi.org/10.1007/s00107-008-0262-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-008-0262-4

Keywords

Navigation