Skip to main content
Log in

Extractives, acidity, buffering capacity, ash and inorganic elements of black locust wood and bark of different clones and origin

Extraktstoffe, Acidität, Pufferkapazität, Asche und anorganische Elemente von Holz und Rinde von Robinien verschiedener Klone und Herkünfte

  • Originalarbeiten Originals
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

Chemical properties of black locust wood and bark from Greece, Bulgaria and Hungary (clones NY, U and J) were investigated. Disks at breast height were taken from 25 black locust trees (five trees per origin and clone) and were divided into separate biomass components (juvenile heartwood, mature heartwood, sapwood and bark). Hot water soluble (HWSE) and dichloromethane soluble extractives (DSE), acidity (pH), buffering capacity, ash content and inorganic elements were determined according to standard laboratory techniques. Bark had the highest extractive content for both HWSE (9.25–13.49%) and DSE (3.09–4.03%). Differences of extractive contents in wood were found to exist between trees of different origin and between the three clones and ranged in heartwood between 5.04–10.10% for HWSE and 0.53–1.83% for DSE and in sapwood between 3.33–6.76% for HWSE and 0.48–1.47% for DSE. The higher values of pH occurred in sapwood (4.92–5.35), while the differences between bark (4.44–5.12) and heartwood (4.35–4.92) were small. Acid (ABC) and base (BBC) buffering capacities from the initial to pH 10 for ABC and to pH 3 for BBC were greater in bark (ABC 0.0172–0.0219 ml/ml and BBC 0.0079–0.0141 ml/ml) than in the other wood components (for heartwood ABC 0.0069–0.0159 ml/ml and BBC 0.0022–0.0096 ml/ml and for sapwood ABC 0.00330.0066 ml/ml and BBC 0.00330.0049 ml/ml). The total ash content was greater in bark (7.24–8.56%) than in other biomass components (for heartwood 0.34–0.89% and for sapwood 0.72–1.24%). The content of the main inorganic elements (Ca, K, Mg, Na, P) were also found to be much higher in bark while sapwood values were greater than heartwood.

Zusammenfassung

Die chemischen Eigenschaften von Holz und Rinde von Robinien aus Griechenland, Bulgarien und Ungarn (Klone NY, U und J) wurden untersucht. Aus 25 Robinien (fünf Bäume pro Herkunft und Klon) wurden in Brusthöhe Stammscheiben entnommen und in die Komponenten juveniles Kernholz, adultes Kernholz, Splintholz und Rinde aufgeteilt. Anhand von Standardlaborverfahren wurden die warmwasserlöslichen (HWSE) und die dichlormethanlöslichen (DSE) Extraktstoffe, die Acidität (pH), die Pufferkapazität, der Aschegehalt und die anorganischen Elemente bestimmt. Die Rinde hatte den höchsten warmwasserlöslichen (9,25–13.49%) und den höchsten dichlormethanlöslichen (3,09–4.03%) Extraktstoffgehalt. Der Extraktstoffgehalt im Holz unterschied sich zwischen den Herkünften und zwischen den drei Klonen. Der HWSE schwankte im Kernholz zwischen 5,04 und 10.10%, der DSE zwischen 0,53 und 1.83%, und im Splintholz lag der HWSE zwischen 3,33 und 6.76% und der DSE zwischen 0,48 und 1.47%. Die höchsten pH-Werte wies Splintholz auf (4,92–5,35). Die Werte für Rinde (4,44–5,12) und Kernholz (4,35–4,92) unterschieden sich kaum. Die Pufferkapazitäten gegenüber Säuren (ABC) und Basen (BBC) im Bereich bis pH 10 (ABC) und bis pH 3 (BBC) waren in der Rinde (ABC 0,0172–0,0219 ml/ml, BBC 0,0079–0,0141 ml/ml) größer als in den anderen Komponenten (Kernholz ABC 0,0069–0,0159 ml/ml, BBC 0,0022–0,0096 ml/ml; Splintholz ABC 0,0033–0,0066 ml/ml, BBC 0,0033–0,0049 ml/ml). Der Gesamtaschegehalt war in der Rinde (7,24–8.56%) größer als im Holz (Kernholz 0,34–0.89%, Splintholz 0,72–1.24%). Der Gehalt der wichtigsten anorganischen Elemente (Ca, K, Mg, Na, P) war in der Rinde am höchsten und im Splintholz höher als im Kernholz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamopoulos S, Voulgaridis E, Passialis C (2005) Variation of certain chemical properties within the stemwood of black locust (Robinia pseudoacacia L.). Holz Roh- Werkst 63(5):327–333

    Article  CAS  Google Scholar 

  2. Allen SE, Grimshaw HM, Parkinson JA, Quarmby C (1974) Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Oxford

    Google Scholar 

  3. ASTM standard D-1102 (1984) Standard test method for ash in wood. American Society for Testing and Materials, Philadelphia, Pennsylvania

  4. ASTM standard D-1108 (1984) Standard test method for dichloromethane solubles in wood. American Society for Testing and Materials, Philadelphia, Pennsylvania

  5. ASTM standard D-1110 (1984) Standard test methods for water solubility of wood. American Society for Testing and Materials, Philadelphia, Pennsylvania

  6. Barrett RP, Mebrahtu T, Hanover JW (1990) Black locust: A multi-purpose tree species for temperate climates. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 278–283

    Google Scholar 

  7. Carll C, Eslyn W, Myers G, Brewer W, Staton D (1985) Evaluation of black locust (Robinia pseudoacacia) as raw material for wet-process hardboard. For Prod J 35(3):11–17

    Google Scholar 

  8. Halupáné Grósz Z (1981) Major characteristics of the wood of improved black locust varieties. Erd Kut 74:49–59

    Google Scholar 

  9. Johns WE, Niazi K (1980) Effect of pH and buffering capacity of wood on the gelation time of urea-formaldehyde resin. Wood Fiber Sci 12(4):256–263

    Google Scholar 

  10. Keresztesi B (1988) The Black Locust. Forestry Monograph-Series of the Agricultural Science Department of the Hungarian Academy of Sciences. Budapest, Hungary, p 197

    Google Scholar 

  11. Klašnja B, Kopitović Š (1992) Some properties of Robinia wood obtained from trees grown in provenance field experiments. Drevarsky Vyskum 134:1–8

    Google Scholar 

  12. Klašnja B, Kopitović Š (1995) Parallel examination of some characteristics of young Robinia wood. Drevarsky Vyskum 2:1–9

    Google Scholar 

  13. Matsouka M (2004) Technical properties of black locust wood (Robinia pseudoacacia L.) from different origin. MSc Dissertation, Aristotle University, Thessaloniki, Greece

    Google Scholar 

  14. Molnar S (1995) Wood properties and utilization of Black Locust in Hungary. Drevarsky Vyskum 1:27–33

    Google Scholar 

  15. Nyárs J (1985) Experiments in particleboard manufacture. Faipar 35:16–18

    Google Scholar 

  16. Stringer JW, Olson JR, Carpenter SB (1982) Variation in wood properties of nine black locust clones. In: Theilges BA (ed) Proceedings of 7th North American Forest Biology Workshop. July 26–28, Lexington, KY, USA, pp 166–171

  17. Stringer JW, Olson JR (1987) Radial and vertical variations in stem properties of juvenile black locust (Robinia pseudoacacia L.). Wood Fiber Sci 19(1):59–67

    Google Scholar 

  18. Whitemore FW (1973) Wood properties in black locust clones. Ohio Agric Res Dec Cent Res Summ 70:13–14

    Google Scholar 

  19. Voulgaridis E, Passialis C, Adamopoulos S (2000) Wood quality characterization in black locust of different origin. In: Proceedings of the 3rd Workshop of COST Action E10: Wood properties for Industrial Use “Measuring of wood properties, grades and qualities in the conversion chains and global wood optimization”, June 19–21, Espoo, Finland, pp 147–162

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stergios Adamopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passialis, C., Voulgaridis, E., Adamopoulos, S. et al. Extractives, acidity, buffering capacity, ash and inorganic elements of black locust wood and bark of different clones and origin . Holz Roh Werkst 66, 395–400 (2008). https://doi.org/10.1007/s00107-008-0254-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-008-0254-4

Keywords

Navigation