Skip to main content
Log in

Effect of heat treatment on the wettability of white ash and soft maple by water

Einfluss der Wärmebehandlung auf die Benetzbarkeit von Weißesche und Rot-Ahorn mit Wasser

  • Originalarbeiten Originals
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

Heat treatment of wood has attracted a lot of attention both in Europe and recently in North America as an environmentally-friendly wood-protection method. The untreated wood is hydrophilic (high affinity for water). During the heat treatment, wood becomes more and more hydrophobic (low affinity for water) with increasing heat treatment temperature. As a result, it becomes more resistant to biological attacks. Furthermore, it becomes dimensionally more stable compared to untreated wood. Its hardness increases. As the wood becomes more hydrophobic, its wettability by water decreases. The effect of heat treatment is different for each species. Studying the wetting characteristics of heat treated wood gives a good indication of the heat treatment effects on certain wood properties which are related to its degree of hydrophobic character. The aim of this work was to study the characteristics of dynamic wetting process for two different heat-treated North American wood species white ash (Fraxinus americana) and soft maple (Acer rubrum). Contact angle measurements before and after heat treatment showed a significant increase in wood hydrophobicity. Advancing contact angles of a water drop were in all cases higher for heat-treated wood than for untreated wood.

Zusammenfassung

Die Wärmebehandlung von Holz als umweltfreundliche Holzschutzmethode stößt in Europa und seit kurzem auch in Nordamerika auf zunehmendes Interesse. Unbehandeltes Holz ist hydrophil, d.h. es nimmt leicht Wasser auf. Während der Wärmebehandlung wird Holz mit steigender Temperatur zunehmend hydrophob, d.h. Wasser abweisend, und infolgedessen gegenüber einem biologischen Befall resistenter. Auch ist es im Vergleich zu unbehandeltem Holz dimensionsstabiler und die Härte nimmt zu. Da das Holz zunehmend hydrophob wird, nimmt die Benetzbarkeit durch Wasser ab. Der Einfluss einer Wärmebehandlung hängt von der Holzart ab. Die Untersuchung der Benetzungseigenschaften von behandeltem Holz ist ein guter Anhaltspunkt für den Einfluss der Wärmebehandlung auf verschiedene Holzeigenschaften, die vom Grad der Hydrophobie abhängen. Ziel dieser Arbeit ist es, die Wirkung eines dynamischen Benetzungsverfahrens auf die zwei wärmebehandelten nordamerikanischen Holzarten Weißesche (Fraxinus americana) und Rot-Ahorn (Acer rubrum) zu untersuchen. Die Messung der Kontaktwinkel vor und nach der Wärmebehandlung zeigt einen signifikanten Anstieg der Hydrophobie von Holz. Die Kontaktwinkel eines Wassertropfens waren bei behandeltem Holz größer als bei unbehandeltem Holz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casilla RC, Chow S, Steiner PR (1981) An Immersion Technique for Studying Wood Wettability. Wood Sci Technol 15:31–43

    Article  CAS  Google Scholar 

  2. Duchez L, Herri JM, Guyonnet R (2001) Modélisation d’un Four de Rétification du Bois. In: Proceedings of 8ième Congrès francophone en Génie des Procédés, Nancy, 17 au 19 Octobre 2001 (Groupe ENSIC 2001), pp 61–68

  3. Dorsey NE (1928) A New Equation for the Determination of Surface Tension from the Form of a Sessile Drop or Bubble. J Wash Acad Sci 18:505–509

    CAS  Google Scholar 

  4. Gérardin P, Petric M, Petrissans M, Lambert J, Ehrhrardt JJ (2007), Evolution of Wood Surface Free Energy after Heat Treatment. Polym Degrad Stabil 92:653–657

    Article  Google Scholar 

  5. Hakkou M, Petrissans M, Zoulalian A, Gerardin P (2005) Investigation of Wood Wettability Changes During Heat Treatment on the Basis of Chemical Analysis. Polym Degrad Stabil 89:1–5

    Article  CAS  Google Scholar 

  6. Hinterstoisser B, Schwanninger M, Stefke B, Stingl R, Patzelt M (2003) Surface Analyses of Chemically and Thermally Modified Wood by FT-NIR. In: van Acker J, Hill C (eds) The 1st European Conference on Wood Modification, Proceeding of the First International Conference of the European Society for Wood Mechanics, April 2nd to 4th 2003, Ghent, Belgium, pp 65–70

  7. Homan W, Tjeerdsma B, Beckers E, Joressen A (2000) Structural and Other Properties of Modified Wood. Congress WCTE, Whistler, Canada 3.5.1-1–3.5.1.-8

  8. Kazayawoko M, Neuman AW, Balatinecz JJ (1997) Estimating the wettability of wood by the Asisymmetric Drop Shape Analysis-contact Diameter method. Wood Sci Technol 31:87–95

    CAS  Google Scholar 

  9. Kocaefe D, Chaudry B, Poncsak S, Bouazara M, Pichette A (2007) Thermogravimetric Study of High Temperature Treatment of Aspen: Effect of Treatment Parameters on Weight Loss and Mechanical Properties. J Mater Sci 42(3):854–866

    Article  CAS  Google Scholar 

  10. Neumann AW, Spelt JK (eds) (1996) Applied Surface Thermodynamics (Surfactant series v. 63). Marcel Dekker Inc, New York

    Google Scholar 

  11. Pavlo B, Niemz P (2003) Effect of Temperature on Color and Strength of Spruce Wood. Holzforschung 57:539–546

    Article  Google Scholar 

  12. Perry RH, Green DW (1999) Perry’s Chemical Engineering Handbook. McGraw-Hill, New York

    Google Scholar 

  13. Petrissans M, Gerardin P, El Bakali I, Serraj M (2003) Wettability of Heat-Treated Wood. Holzforschung 57:301–307

    Article  CAS  Google Scholar 

  14. Robbins C, Morrel J (2006) Mold, Housing and Wood. Western Wood Product Publications, http://www.wwpa.org/pdf/TG2.pdf

  15. Rodriguez-Valverde MA, Cabrerizo-Vlchez MA, Rosales-Lopez P, Paez-Duenas A, Hidalgo-Alvarez R (2002) Contact Angle Measurements on Two (Wood and Stone) Non-Ideal Surfaces. Colloid Surf A: Physicochem Eng Aspects 206:485–495

    Article  CAS  Google Scholar 

  16. Rowell R, Lange S, Davis M (2000) Steam Stabilization of Aspen Fiberboards. In: Evans PD (ed) Proceedings of 5th Pacific Rim Bio-based Composites Symposium, Canberra, Australia, December 10–13 2000 (ACIAR Proceedings, 2000), pp 425–438

  17. Shi Q, Gardner DJ, Wang JZ (1997) Surface Properties of Polymeric Automobile Fluff Particles Characterized by Inverse Gas Chromatography and Contact Angle Analysis. In: Int. Conf. of Woodfiber-Plast. Compos. 4th Forest Product Society, Madison, USA, pp 245–256

  18. Stamm AJ (1956) Thermal Degradation of Wood and Cellulose. Ind Eng Chem 48:413–417

    Article  CAS  Google Scholar 

  19. Stamm AJ, Burr HK, Kline AA (1946) Staybwood-Heat-Stabilized Wood. Ind Eng Chem 38:630–634

    Article  CAS  Google Scholar 

  20. Walinder MEP, Johansson I (2001) Measurement of Wood Wettability by the Wilhelmy Method. Holzforschung 1(55):21–32

    Article  Google Scholar 

  21. Walinder MEP, Strom G (2001) Measurement of Wood Wettability by the Wilhelmy Method. Holzforschung 2(55):33–41

    Article  Google Scholar 

  22. Weiland JJ, Guyonnet R (2003) Study of Chemical Modifications and Fungi Degradation of Thermally Modified Wood using DRIFT Spectroscopy. Holz Roh- Werkst 61:216–220

    CAS  Google Scholar 

  23. Woodward RP (2007) Contact Angle Measurements Using the Drop Shape Method. Technical Information, First Ten Angstroms Inc., http://www.firsttenangstroms.com/papers/papers.html, accessed in August 2007

  24. Woodward RP, FTÅ200 Measurement Capabilities, technical information, pp 1–8, First Ten Angstroms Inc., www.firsttenangstroms.com/pdfdocs/mea.pdf, accessed in August 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Kocaefe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocaefe, D., Poncsak, S., Doré, G. et al. Effect of heat treatment on the wettability of white ash and soft maple by water . Holz Roh Werkst 66, 355–361 (2008). https://doi.org/10.1007/s00107-008-0233-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-008-0233-9

Keywords

Navigation