Holz als Roh- und Werkstoff

, Volume 64, Issue 3, pp 221–226 | Cite as

UF resin efficiency of MDF as affected by resin content loss, coverage level and pre-cure

  • Cheng XingEmail author
  • James Deng
  • S.Y. Zhang
  • Bernard Riedl
  • Alain Cloutier


A full-factorial experimental design was used to investigate the effects of three factors on UF resin efficiency. Within the limits of this study, the three factors, namely, resin content loss, resin coverage level and resin pre-cure time for mechanical blended MDF fibres were found to have significant effects on resin efficiency as evaluated by the internal bond strength (IB) of the panels. The most significant factor was resin content loss followed by resin coverage level and resin pre-cure. The resin coverage level had a positive effect on resin efficiency, while the resin content loss, resin pre-cure time at 40 °C conditions, the interactions of resin coverage level and resin content loss as well as resin coverage level with pre-cure had negative effects on resin efficiency. For a given resin content, the resin efficiency could be increased by 35% by increasing the level of resin coverage. The resin efficiency obviously decreased with resin content loss and pre-cure time.


Internal Bond Resin Content Urea Formaldehyde Resin Internal Bond Strength Medium Density Fibreboard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Beeinflussung der UF-Harzwirksamkeit bei MDF durch Harzverlust, Harzverteilungsgrad und Harzvorhärtung


In einem vollständig faktoriell angelegten Versuch wurde die Wirkung der drei Faktoren Harzverlust, Harzverteilungsgrad und Harzvorhärtung auf die UF-Harzwirksamkeit untersucht. Im Rahmen dieser Studie zeigte sich anhand der Bewertung der Querzugfestigkeit (IB) der Platten, dass sich diese drei Faktoren erheblich auf die Harzwirksamkeit bei mechanisch durchmischten MDF-Fasern auswirken. Der bedeutendste Faktor war Harzverlust gefolgt von Harzverteilungsgrad und Harzvorhärtung. Der Harzverteilungsgrad wirkte sich auf die Harzwirksamkeit positiv aus. Dagegen wirkten sich Harzverlust, Harzvorhärtungszeit bei einer Temperatur von 40 °C, sowie die gemischten Glieder aus Harzverteilungsgrad und Harzverlust sowie aus Harzverteilungsgrad und Vorhärtung negativ auf die Harzwirksamkeit aus. Durch eine verbesserte Harzverteilung konnte die Harzwirksamkeit bei gegebenem Harzgehalt um 35% erhöht werden. Die Harzwirksamkeit nimmt offensichtlich mit zunehmendem Harzverlust und Vorhärtungszeit ab.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    America Society for Testing and Materials (1999) Standard methods of evaluating the properties of wood based fibre and particle panel materials. ASTM Standard Designation: D-1037-99Google Scholar
  2. 2.
    Anonymous (2003) Chinese tiger wide awake. Wood Based Panels Intern 23(3):11–20Google Scholar
  3. 3.
    Bücking G (1982) Resin blending of MDF fibre. In: Proceedings of the 16th Particleboard/Composite Materials Symposium. Washington State University, Pullman, WS, USA, pp 269–276Google Scholar
  4. 4.
    Dunky M (1998) Urea-formaldehyde (UF) adhesive resins for wood. Int J Adhes Adhes 18:95–107CrossRefGoogle Scholar
  5. 5.
    Gran G (1982) Blowline blending in dry process fibreboard production. In: Proceedings of the 16th Particleboard/Composite Materials Symposium. Washington State University, Pullman, WS, USA, pp 245–259Google Scholar
  6. 6.
    Loxton C, Hague J (1996) Resin blending in the MDF industry – Can it be improved? In: Proceedings of the 3rd Pacific Rim Bio-Based Composite Symposium. December 2–5, Kyoto, Japan, pp 392–400Google Scholar
  7. 7.
    Robson D (1991) What happens with blending in the MDF blowline. In: Proceedings of the 25th Particleboard/Composite Materials Symposium. Washington State University, Pullman, WS, USA, pp 167–179Google Scholar
  8. 8.
    Waters GD (1990) Medium density fibreboard blow line blending-theories in and around the black box. In: Proceeding of NPA Resin and Blending Seminar. National Particleboard Assocation, Gaitherburg, MD, USA, pp 56–61Google Scholar
  9. 9.
    Xing C (2003) Characterization of urea formaldehyde resin efficiency affected by four factors in the manufacture of medium density fiberboard. PhD thesis, Laval University, CanadaGoogle Scholar
  10. 10.
    Riedl B, Cloutier A, Xing C, Shaler SM (2003) Characterization of urea-formaldehyde distribution on medium density fiberboard fibers by laser fluorescence Microscopy. In: Proceedings of the IAWPS 2003, pp 321–324Google Scholar
  11. 11.
    Xing C, Riedl B, Cloutier A (2004) Measurement of urea-formaldehyde resin distribution as a function of MDF fiber size by laser scanning microscopy. Wood Sci Technol 37(6):495–507CrossRefGoogle Scholar
  12. 12.
    Xing C, Riedl B, Cloutier A, Shaler SM (2005) Characterization of UF resin penetration into MDF fibers. Wood Sci Technol 39(5):374–384CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Cheng Xing
    • 1
    Email author
  • James Deng
    • 1
  • S.Y. Zhang
    • 1
  • Bernard Riedl
    • 2
  • Alain Cloutier
    • 2
  1. 1.Forintek Canada Corp.QuébecCanada
  2. 2.département des Sciences du Bois, Faculté de foresterie et de géomatique, CERSIMUniversité LavalQuebecCanada

Personalised recommendations