Chemical analysis of heat treated softwoods

  • Michiel J. BoonstraEmail author
  • Bôke Tjeerdsma


Heat treatment of wood has been found an effective method to improve dimensional stability and durability against biodegradation. A two-stage heat treatment of wood at relatively mild conditions (<200 °C) was investigated by using different chemical analysing methods, such as a wood chemical component analysis, CHNO-elemental analysis, UV-spectroscopy, and analysis of the acetyl and free hydroxyl group content. The results of this study contribute to a better understanding of the typical reaction mechanisms occurring and of the effect of heat treatment on the properties of wood, as described in previous 13C-NMR and FTIR studies of heat treated wood.


Lignin Hemicellulose Secondary Cell Wall Middle Lamella Treated Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chemische Analyse von wärmebehandeltem Holz


Die Wärmebehandlung von Holz hat sich als ein wirksames Verfahren zur Verbesserung der Dimensionsstabilität und Fäuleresistenz erwiesen. In dieser Studie wurde eine zweistufige Wärmebehandlung von Holz unter relativ milden Bedingungen (<200 °C) untersucht. Dabei wurden verschiedene chemische Analyseverfahren, wie zum Beispiel chemische Analyse der Holzbestandteile, CHNO-Elementaranalyse, UV-Spektroskopiesowie Analyse des Acetylgehalts und der freien Hydroxylgruppen angewandt. Die Ergebnisse dieser Studie tragen zu einem besseren Verständnis der auftretenden Reaktionsmechanismen sowie der Wirkung einer Wärmebehandlung auf die Eigenschaften von Holz bei, die bereits in früheren 13C-NMR und FTIR Studien über wärmebehandeltes Holz beschrieben wurden.


  1. 1.
    Abatzoglou N, Koeberle PG, Chornet E, Overend RP, Koukios EG (1990) An application to medium consistency suspension of hardwoods using a plug flow reactor. Can J Chem Eng 68:627–638Google Scholar
  2. 2.
    Baeza J, Freer J (2001) Chemical characterization of wood and its components. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, New York, pp 275–384Google Scholar
  3. 3.
    Belkacemi K, Abatzoglou N, Overend RP, Chornet E (1991) Phenomenological kinetics of complex systems: mechanistic condiderations in the solubilization of hemicellulose following aqueous/steam treatment. Ind Eng Chem Res 30:2416–2425CrossRefGoogle Scholar
  4. 4.
    Bobleter O, Binder H (1980) Dynamischer hydrothermaler Abbau von Holz. Holzforschung 34:48–51Google Scholar
  5. 5.
    Boonstra MJ, Tjeerdsma BF, Groeneveld HAC (1998) Thermal modification of non-durable wood species. Part 1, The Plato technology: thermal modification of wood. International Research Group on Wood Preservation, Document no. IRG/WP 98-40123Google Scholar
  6. 6.
    Boonstra MJ, Pizzi A, Tekely P, Pendlebury J (1996) Chemical modification of Norway spruce and Scots pine. A 13C NMR CP-MAS study of the reactivity and reactions of polymeric wood components with acetic anhydride. Holzforschung 50:215–220Google Scholar
  7. 7.
    Bourgois J, Guyonnet R (1988) Characterization and analysis of torrified wood. Wood Sci Technol 22:143–155CrossRefGoogle Scholar
  8. 8.
    Browning BL (1967) Methods of wood chemistry. John Wiley & Sons, Inc, New YorkGoogle Scholar
  9. 9.
    Burmester A (1973) Einfluss einer Wärme-Druck-Behandlung halbtrockenen Holzes auf seine Formbeständigkeit. Holz Roh- Werkst 31:237–243CrossRefGoogle Scholar
  10. 10.
    Burmester A (1975) Zur Dimensionsstabilisierung von Holz. Holz Roh- Werkst 33:333–335CrossRefGoogle Scholar
  11. 11.
    Faix O, Böttcher JH (1992) The influence of particle size and concentration in transmission and diffuse spectroscopy of wood. Holz Roh- Werkst 50:221–226CrossRefGoogle Scholar
  12. 12.
    Fengel D (1980) Experiments on the alkaline extraction of polyoses from spruce holocellulose. Das Papier 34(10):428–433Google Scholar
  13. 13.
    Fengel D, Wegener G (1984) Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter & Co, Berlin New York, pp 66–105Google Scholar
  14. 14.
    Fukazawa K (1992) Ultraviolet microscopy. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, p 578Google Scholar
  15. 15.
    Giebeler E (1983) Dimensionsstabilisierung von Holz durch eine Feuchte/Wärme/Druck-Behandlung. Holz Roh- Werkst 41:87–94CrossRefGoogle Scholar
  16. 16.
    Goldschmid O (1971) Ultraviolet spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins. Occurrence, formation, structure and reactions. Wiley Interscience, New York London Sidney Toronto, pp 241–266Google Scholar
  17. 17.
    Hillis WE (1984) High temperature and chemical effects on wood stability. Part 1, General considerations. Wood Sci Technol 18:281–293CrossRefGoogle Scholar
  18. 18.
    Hon DNS (1991) Photochemistry of wood. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, New York Basel, pp 525–555Google Scholar
  19. 19.
    Okamura K (2001) Structure of cellulose. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, New York Basel, pp 83–108Google Scholar
  20. 20.
    Sakakibara A (2001) Chemistry of lignin. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, New York Basel, pp 109–173Google Scholar
  21. 21.
    Ishii T, Shimizu K (2001) Chemistry of cell wall polysaccharides. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc, New York, pp 175–212Google Scholar
  22. 22.
    Kollmann F, Fengel D (1965) Änderungen der chemischen Zusammensetzung von Holz durch thermische Behandlung. Holz Roh- Werkst 21(3):77–85CrossRefGoogle Scholar
  23. 23.
    Kollmann F, Schneider A (1963) Über dass Sorptionsverhalten wärmebehandelter Hölzer. Holz Roh- Werkst 41:87–94Google Scholar
  24. 24.
    Kumar S (1994) Chemical modification of wood. Wood Fiber Sci 26(2):270–280Google Scholar
  25. 25.
    Militz H, Beckers EPJ, Homan WJ (1997) Modification of solid wood: Research and practical potential. International Research Group in Wood Preservation, Document No IRG/WP 97-40098Google Scholar
  26. 26.
    Noack D (1969) Über die Heisswasserbehandlung von Rotbuchenholz im Temperaturbereich von 100 bis 180 °C. Holzforsch Holzverwert 21(5):118–124Google Scholar
  27. 27.
    Pizzi A, Stephanou A, Boonstra MJ, Pendlebury AJ (1994) A new concept on the chemical modification of wood by organic anhydrides. Holzforschung 48:91–94CrossRefGoogle Scholar
  28. 28.
    Pott GT (2004) Natural fibers with low moisture sensitivity. In: Natural fibers, plastics and composites, Chapter 8, Kluwer Academic Publishers, ISBN 1 4020 7643 6Google Scholar
  29. 29.
    Rowell RM (1983) Chemical modification of wood. Forest Prod Abstr 6(12):363–382Google Scholar
  30. 30.
    Rowell RM (1984) The chemistry of solid wood. American Chemical Society, Washington DC 84Google Scholar
  31. 31.
    Rowell RM (1984b) Penetration and reactivity of cell wall components. In: The chemistry of solid wood. American Chemical Society, Washington DC, pp 175–210Google Scholar
  32. 32.
    Rowell RM, Simonson S, Hess DV, Plackett DV, Cronshow D, Dunningham E (1994) Acetyl distribution in acetylated whole wood and reactivity of wood cell-wall components to acetic anhydride. Wood Fiber Sci 26:11–18Google Scholar
  33. 33.
    Rubio Torres M, Heitz M, Chauvette G, Chornet E (1986) Conversion and solubilization profiles of a prototype hardwood (Populus tremuloides) following aqueous thermomechanical pre-treatment. Biomass 10:85–96CrossRefGoogle Scholar
  34. 34.
    Seborg RM, Tarkow H, Stamm AJ (1953) Effect of heat upon the dimensional stabilisation of wood. J For Prod Res Soc 3(9):59–67Google Scholar
  35. 35.
    Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43CrossRefPubMedGoogle Scholar
  36. 36.
    Stamm AJ (1964) Wood and cellulose science. Ronald Press, USA, pp 312–342Google Scholar
  37. 37.
    Tjeerdsma BF, Boonstra M, Militz H (1998) Thermal modification of non-durable wood species. Part 2, Improved wood properties of thermally treated wood. International Research Group on Wood Preservation, Document No IRG/WP 98-40124Google Scholar
  38. 38.
    Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood poerformance improvement. Holz Roh- Werkst 56:149–153CrossRefGoogle Scholar
  39. 39.
    Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh- Werkst 63:102–111CrossRefGoogle Scholar
  40. 40.
    Viitaniemi P, Jämsä S (1996) Modification of wood by heat treatment. VTT publications 814Google Scholar
  41. 41.
    Weiland JJ, Guyonnet R (1997) Retifiziertes Holz. 16. Verdichter Holzbau in Europa, Motivation, Erfahrung, Entwicklung, Dreilander Holztagung, 10. Joanneum Research Fachtage, 2.-5.11.1997, Grazer Congress, Grazz, AustriaGoogle Scholar
  42. 42.
    Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade J 122(2):35–43Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Plato International BVArnhemNetherlands
  2. 2.SHR Hout ResearchWageningenNetherlands

Personalised recommendations