Determination of fiber orientation in Norway spruce using X-ray diffraction and laser scattering

  • Matti-P. SarénEmail author
  • Ritva Serimaa
  • Yrjö Tolonen


Spiral grain reduces the quality of timber since it causes twisting during drying and reduces the mechanical strength of wood products. The orientation of wood fibers in Norway spruce as a function of the distance from the pith was studied using both x-ray diffraction and light scattering. In radial-longitudinal plane upper tips of fibers were tilted towards the pith and the tilt angle increased gradually towards the bark in most of the samples. Periodic oscillations in the spiral grain angle were observed. Increased growth rate was found to increase the amplitude of this oscillation. There was no clear correlation between the angles determining the fiber orientation and other parameters like the lumen diameter, the cell wall thickness, the density of the sample, the fiber length, the circularity index of the cell lumen, or the mean microfibril angle. However, fiber orientation in tangential-longitudinal plane varied more in broad annual rings than in narrow annual rings.


Bark Annual Ring Compression Wood Wood Section Circularity Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bestimmung der Faserneigung in Fichtenholz mittels Röntgenbeugung und Laserstreuung


Drehwuchs verringert die Holzqualität, weil er zu Verdrehungen beim Trocknen führt und die mechanische Festigkeit der Holzprodukte verringert. Mittels Röntgenbeugung und Laserstreuung wurde die Faserneigung in Fichtenholz in Abhängigkeit vom Abstand zur Markröhre untersucht. In radial-longitudinaler Ebene neigten sich die oberen Faserenden zum Mark hin. Zur Rinde hin stieg der Neigungswinkel bei den meisten Proben allmählich an. Der Faserwinkel unterlag periodischen Schwankungen, die mit zunehmender Jahrringbreite grösser wurden. Eine eindeutige Korrelation zwischen den Faserwinkeln und anderen Parametern, wie zum Beispiel Zelllumendurchmesser, Zellwanddicke, Probendichte, Faserlänge, Rundheitsindex der Zelllumen oder dem mittleren Mikrofibrillenwinkel, konnte nicht festgestellt werden. Die Faserneigung in tangential-longitudinaler Ebene variierte jedoch bei breiten Jahrringen mehr als bei schmalen Jahrringen.


  1. 1.
    Chalk L, Ortiz CM (1961) Variation in tracheids length within the ring in Pinus radiata D Don. Tappi J 45:628–634Google Scholar
  2. 2.
    Ekevad M (2004) Method to compute fiber directions in wood from computed tomography images. J Wood Sci 50:41–46CrossRefGoogle Scholar
  3. 3.
    Eklund L, Säll H, Linder S (2003) Enhanced growth and ethylene increases spiral grain formation in Picea abies and Abies balsamea trees. Trees 17:81–86CrossRefGoogle Scholar
  4. 4.
    Evans R, Stuart S-A, Van Der Touw J (1996) Microfibril angle scanning of increment cores by X-ray diffractometry. Appita J 49:411–414Google Scholar
  5. 5.
    Evans R (1999) Variance approach to the X-ray diffractometric estimation of microfibril angle in wood. Appita J 52:283–294Google Scholar
  6. 6.
    Gjerdrum P, Säll H, Storø HM (2002) Spiral grain in Norway spruce: constant change rate in grain angle in Scandinavian sawlogs. Forestry 75:163–170CrossRefGoogle Scholar
  7. 7.
    Harris JM (1989) Spiral grain and wave phenomena in wood formation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. 8.
    Hannrup B, Grabner M, Karlsson B, Müller U, Rosner S, Wilhelmsson L, Wimmer R (2004) Genetic parameters for spiral-grain angle in two 19-year-old clonal Norway spruce trials. Ann For Sci 59:551–556CrossRefGoogle Scholar
  9. 9.
    Johansson M, Kliger R (2002) Influence of material characteristics on warp in Norway spruce studs. Wood Fiber Sci 34:325–336Google Scholar
  10. 10.
    Johansson M, Perstorper M, Kliger R, Johansson G (2001) Distortion of Norway spruce timber Part 2. Modelling twist. Holz Roh- Werkst 59:155–162CrossRefGoogle Scholar
  11. 11.
    Kliger R (2001) Spiral grain on logs under bark reveals twist-prone raw material. Forest Prod J 51:67–73Google Scholar
  12. 12.
    Klug HP, Alexander LE (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  13. 13.
    Kollman FFP, Côté WA (1984) Principles of wood science and technology, vol 1, Solid wood. Springer-Verlag, BerlinGoogle Scholar
  14. 14.
    Kozlowski TT, Huges JF, Leyton L (1967) Movement of injected dyes in gymnosperm stems in relation to tracheid alignment. Forestry 40:207–219CrossRefGoogle Scholar
  15. 15.
    Kozlowski TT, Winget CH (1963) Patterns of wood movement in forest trees. Bot Gaz 124:301–311CrossRefGoogle Scholar
  16. 16.
    Linder S (1995) Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce. Ecol Bull 44:178–190Google Scholar
  17. 17.
    Lu W, Tan J (2004) Grain pattern characterization and classification of walnut by image processing. Wood Fiber Sci 36:311–318Google Scholar
  18. 18.
    Mäkinen H, Saranpää P, Linder S (2001) Effect of nutrient optimization on branch characteristics in Picea abies (L.) Karst. Scand J Forest Res 16:354–362CrossRefGoogle Scholar
  19. 19.
    Mäkinen H, Saranpää P, Linder S (2002) Effect of growth rate on fibre characteristics in Norway spruce (Picea abies (L.) Karst.). Holzforschung 56:449–460CrossRefGoogle Scholar
  20. 20.
    Mäkinen H, Saranpää P, Linder S (2002) Wood-density variation of Norway spruce in relation to nutrient optimization and fiber dimensions. Can J Forest Res 32:185–194CrossRefGoogle Scholar
  21. 21.
    Northcott PL (1957) Is spiral grain the normal growth pattern? Forest Chron 33:333–352Google Scholar
  22. 22.
    Nyström J (2002) Automatic measurement of compression wood and spiral grain for the prediction of distortion in sawn wood products. Doctoral thesis, Division of wood Technology, Skellefteå Campus, Lulea University of Technology, Sweden, ISSN: 1402-1544ISRN:LTU-DT–02/37–SEGoogle Scholar
  23. 23.
    Nyström J (2003) Automatic measurement of fiber orientation in softwood by using the tracheids effect. Comput Electron Agr 41:91–99CrossRefGoogle Scholar
  24. 24.
    Pape R (1999) Effect of thinning on wood properties of Norway spruce. Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala, Silvestria 88Google Scholar
  25. 25.
    Peura M, Serimaa R, Sarén M-P, Saranpää P, Paakkari T (2005) The structure and cellulose deposition of Norway spruce tracheids grown in different nutritional conditions. Manuscript in preparationGoogle Scholar
  26. 26.
    Perstorper M, Johansson M, Kliger R, Johansson G (2001) Distortion of Norway spruce timber – Part 1. Variation of relevant wood properties. Holz Roh- Werkst 59:94–103CrossRefGoogle Scholar
  27. 27.
    Sarén M-P, Serimaa R, Andersson S, Paakkari T, Saranpää P, Pesonen E (2001) Structural variation of tracheids in Norway spruce (Picea abies [L.] Karst.). J Struct Biol 136:101–109CrossRefPubMedGoogle Scholar
  28. 28.
    Sarén M-P, Serimaa R, Andersson S, Saranpää P, Keckes J, Fratzl P (2004) Effect of growth rate on mean microfibril angle and cross-sectional shape of tracheids of Norway spruce.Google Scholar
  29. 29.
    Sepúlveda P, Kline DE, Oja J (2003) Prediction of fiber orientation in Norway spruce logs using an X-ray scanner: A Preliminary study. Wood Fiber Sci 35:421–428Google Scholar
  30. 30.
    Shen J, Zhou J, Vazquez O (2000) Experimental study of optical scattering and fiber orientation of softwood and hardwood with different surface finishes. Appl Spectrosc 54:1793–1804CrossRefGoogle Scholar
  31. 31.
    Simonaho S-P, Palviainen J, Tolonen Y, Silvennoinen R (2004) Determination of wood grain direction from laser light scattering pattern. Opt Laser Eng 41:95–103CrossRefGoogle Scholar
  32. 32.
    Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal threatment. Macromolecules 23:3196–3198CrossRefGoogle Scholar
  33. 33.
    Wobst J, Olivervillanueva JV, Doebel R (1994) Variability of fiber angle in wood of ash (Fraxinus-Excelsior L.) and Douglas fir (Pseudotsuga-mensii (mirb) Franco). Holz Roh- Werkst 52:342–346CrossRefGoogle Scholar
  34. 34.
    Zhou J, Shen J (2003) Ellipse detection and phase demodulation for wood grain orientation measurement based on the tracheid effect. Opt Laser Eng 39:73–89CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.A Measurement and sensor laboratoryUniversity of OuluKajaaniFinland
  2. 2.Division of x-ray Physics, Department of Physical SciencesUniversity of HelsinkiUniversity of HelsinkiFinland
  3. 3.YTI-Research CenterMikkeli PolytechnicMikkeliFinland

Personalised recommendations