Advertisement

Holz als Roh- und Werkstoff

, Volume 64, Issue 3, pp 227–234 | Cite as

Optimising the properties of OSB by a one-step heat pre-treatment process

  • W. Paul
  • M. OhlmeyerEmail author
  • H. Leithoff
  • M.J. Boonstra
  • A. Pizzi
ORIGINALARBEITEN ORIGINALS

Abstract

Heat-treatment of solid wood to increase its dimensional stability and durability is well known and established in the industry. To enhance the application of wood-based panels (e.g. for exterior application) their durability against moisture and fungal decay has to be improved.

In this paper a possibility is shown, how to adapt a heat treatment process on wood-based panels. Two different temperatures were applied on strands of Scots pine, before hot-pressing oriented strand board. The mechanical properties show an influence of the applied temperature on the strands and of the adhesive used for the panel. The thickness swelling is reduced (Fig. 3), resulting in increased dimensional stability. The process temperature has a major influence; with an increased pre-treatment temperature the thickness swelling is reduced. The internal bond strength was not affected by the pre-treatment.

Keywords

Dimensional Stability Equilibrium Moisture Content Internal Bond Polyurea Solid Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Eigenschaftsoptimierung von OSB durch einstufige Hitze-Vorbehandlung

Zusammenfassung

Die Hitzebehandlung von Holz zur Erhöhung seiner Dimensionsstabilität und Dauerhaftigkeit ist ein bekanntes und in der Industrie angewandtes Verfahren. Um das Einsatzspektrum von Holzwerkstoffen (z.B. für den Aussenbereich) zu erweitern, muss deren Widerstandsfähigkeit gegen Feuchte und Pilzbefall verbessert werden.

In dieser Arbeit wird eine Möglichkeit dargestellt, wie sich eine Hitzebehandlung auf Holzwerkstoffe anwenden lässt. OSB-Strands aus Kiefer wurden bei zwei verschiedenen Temperaturen behandelt. Die Versuchsergebnisse zeigen einen Einfluss der Behandlungstemperatur auf die Strands und des eingesetzten Bindemittels auf die Platteneigenschaften. Die Dickenquellung ist reduziert (Abb. 3), woraus eine erhöhte Dimensionsstabilität resultiert. Die Prozesstemperatur hat den grössten Einfluss; mit erhöhter Vorbehandlungstemperatur sinkt die Dickenquellung. Die Querzugfestigkeit wurde durch die Vorbehandlung nicht verändert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burmester A (1970) Formbeständigkeit von Holz gegenüber Feuchtigkeit- Grundlagen und Vergütungsverfahren. BAM BerichteGoogle Scholar
  2. 2.
    Burmester A (1974) Erfolgreiche Quellungsvergütung mit einfachen Mitteln (1). Holz Kunstst 8:534–538Google Scholar
  3. 3.
    Buro A (1954) Die Wirkung von Hitzebehandlungen auf die Pilzresistenz von Kiefern- und Buchenholz. Holz Roh- Werkst 12:297–304CrossRefGoogle Scholar
  4. 4.
    Byrne CE, Nagle DC (1997) Carbonization of Wood for Advanced Materials Applications. Carbon 35(2):259–266CrossRefGoogle Scholar
  5. 5.
    Dunky M (2002) COST E 13 WG 1 (Wood Adhesives and Bonding Process) State-of-the-Art-Report, Chapter 2.1, Formaldehyde resinsGoogle Scholar
  6. 6.
    EN 300 (1997) Oriented Strand Boards. Definitions, Classification and SpecificationsGoogle Scholar
  7. 7.
    EN 310 (1993) Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending StrengthGoogle Scholar
  8. 8.
    EN 317 (1993) Particleboards and Fibreboards. Determination of Swelling in Thickness after Immersion in WaterGoogle Scholar
  9. 9.
    EN 319 (1993) Particleboards and Fibreboards. Determination of Tensile Strength Perpendicular to the Plane of the BoardGoogle Scholar
  10. 10.
    EN 322 (1993) Wood-Based Panels. Determination of Moisture ContentGoogle Scholar
  11. 11.
    EN 1087-1 (1995) Particleboards. Determination of Moisture Resistance – Part 1: Boil TestGoogle Scholar
  12. 12.
    Fengel D, Wegener G (eds) (1989) Wood- Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin New YorkGoogle Scholar
  13. 13.
    Giebeler E (1983) Dimensionsstabilisierung von Holz durch eine Feuchte/ Wärme/Druck-Behandlung. Holz Roh- Werkst 41:87–94CrossRefGoogle Scholar
  14. 14.
    Goroyias GJ, Hale MD (2002) Heat Treatment of Wood Strands for OSB Production: Effect on the Mechanical Properties, Water Absorption and Dimensional Stability. 33rd Annual Meeting of the International Research Group on Wood Preservation in Cardiff, WalesGoogle Scholar
  15. 15.
    Grunwald D (2002) COST E 13 WG 1 (Wood Adhesives and Bonding Process) State-of-the-Art-Report, Chapter 2.2, Polyurethane AdhesivesGoogle Scholar
  16. 16.
    Jämsä S, Viitaniémi P (2001) Heat Treatment of Wood- Better Durability without Chemicals. Review on Heat Treatments of Wood. Rapp AO (ed) Proceedings of Special Seminar in Antibes, FranceGoogle Scholar
  17. 17.
    Kollmann F, Fengel D (1965) Changes in the Chemical Composition of Wood by Thermal Treatment. Holz Roh- Werkst 23:461–468Google Scholar
  18. 18.
    Militz H, Tjeerdsma B (2001) COST E 22 Heat Treatment of Wood by the Plato Process. Review on Heat Treatments of Wood. Rapp AO (ed) Proceedings of Special Seminar in Antibes, FranceGoogle Scholar
  19. 19.
    Ohlmeyer M, Lukowsky D (2004) Wood-Based Panels Produced from Thermal Treated Wood – Properties and Perspectives. Wood-Frame Housing Durability and Disaster Issues Conference. October 4–6 2004, Las Vegas, USAGoogle Scholar
  20. 20.
    Pizzi A (1994) Advanced Wood Adhesives Technology. Marcel Dekker Inc, New York Basel Hong KongGoogle Scholar
  21. 21.
    Rapp AO, Sailer M (2001) COST E 22 Oil Heat Treatment of Wood in Germany-State of the Art. Review on Heat Treatments of Wood. Rapp AO (ed) Proceedings of Special Seminar in Antibes, FranceGoogle Scholar
  22. 22.
    Runkel R (1951) Zur Kenntnis des thermoplastischen Verhaltens von Holz 1. Mitteilung. Holz Roh- Werkst 9:41–53Google Scholar
  23. 23.
    Runkel R, Wilke D (1951) Zur Kenntnis des thermoplastischen Verhaltens von Holz 2. Mitteilung. Holz Roh- Werkst 9:260–270CrossRefGoogle Scholar
  24. 24.
    Sandermann W, Augustin H (1963) Chemical Investigations on the Thermal Decomposition of Wood, Part I: Stand of Research. Holz Roh- Werkst 21:256–265CrossRefGoogle Scholar
  25. 25.
    Sandermann W, Augustin H (1963) Chemical Investigations on the Thermal Decomposition of Wood, Part II: Investigations by Means of the Differential Thermal Analysis. Holz Roh- Werkst 21:305–315CrossRefGoogle Scholar
  26. 26.
    Sandermann W, Augustin H (1964) Chemical Investigations on the Thermal Decomposition of Wood, Part III: Chemical Investigation on the Course of Decomposition. Holz Roh- Werkst 22:377–385CrossRefGoogle Scholar
  27. 27.
    Šernek M, Kamke AF, Glasser WG (2004) Comparative analysis of inactivated wood surface. Holzforschung 58:22–31CrossRefGoogle Scholar
  28. 28.
    Stamm AJ, Burr HK, Kline AA (1946) Heat Stabilized Wood (Staybwood). Forest Products Laboratory Madison (USA), Rep No R 1621Google Scholar
  29. 29.
    Syrjänen T (2001) COST E 22 Production and Classification of Heat-Treated Wood in Finland. Review on Heat Treatments of Wood. Rapp AO (ed) Proceedings of Special Seminar in Antibes, FranceGoogle Scholar
  30. 30.
    Tjeerdsma BF, Boonstra M, Pizzi A, Militz H (1998) Characterisation of Thermally Modified Wood: Molecular Reasons for Wood Performance Improvement. Holz Roh- Werkst 56:149–153CrossRefGoogle Scholar
  31. 31.
    Tjeerdsma BF, Militz H (2005) Chemical Changes in Hydrothermal Treated Wood: FTIR Analysis of Combined Hydrothermal and Dry Heat-Treated Wood. Holz Roh- Werkst 63:102–111CrossRefGoogle Scholar
  32. 32.
    Vernois M (2001) COST E 22 Heat Treatment of Wood in France- State of the Art. Review on Heat Treatments of Wood. Rapp AO (ed) Proceedings of Special Seminar in Antibes, FranceGoogle Scholar
  33. 33.
    Weiland JJ, Guyonnet R (2003) Study of Chemical Modifications and Fungi Degradation of Thermally Modified Wood Using DRIFT-Spectroscopy. Holz Roh- Werkst 61:216–220Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • W. Paul
    • 1
  • M. Ohlmeyer
    • 1
    Email author
  • H. Leithoff
    • 1
  • M.J. Boonstra
    • 2
  • A. Pizzi
    • 3
  1. 1.Federal Research Institute for Mechanical Technology of Wood (BFH)HamburgGermany
  2. 2.Plato Wood Products BVArnhemNetherlands
  3. 3.ENSTIB-LERMABUniversity of Nancy 1Epinal Cedex 9France

Personalised recommendations